

D5.6 ð Final AAA layer for IoT cross platform models

Deliverable ID D5.6

Deliverable Title Final AAA layer for IoT cross platform models

Work Package WP5

Dissemination Level PUBLIC

Version V0.10

Date 2020-09-04

Status FINAL

Lead Editor AIRBUS

Main Contributors Paul-Emmanuel BRUN (AIRBUS), Kévin LEPRETRE (AIRBUS),

Guillemette MASSOT (AIRBUS)

Published by the BRAIN-IoT Consortium

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D5.2

Initial AAA layer for IoT cross platform models

Final - 04 September 2020
Page 2 of 41

Document History

Version Date Author(s) Description

0.0 2020-04-22

Guillemette

MASSOT

(AIRBUS)

 First Draft with TOC

0.1 2020-05-30
Kévin LEPRETRE

(AIRBUS)

Contributions to describe the different Authentication

mechanisms

0.2 2020-06-18

Guillemette

MASSOT

(AIRBUS)

Overall refinement and add of figures

0.3 2020-06-19

Guillemette

MASSOT

(AIRBUS)

Refinement of section 2 : distinction between components

description and implementation of the AAA layer

0.4 2020-06-22

Kévin LEPRETRE

+ Guillemette

MASSOT

(AIRBUS)

Refinement introduction of 2.1.2.1 + Update of the two

sequence diagram describing first enrolment

0.5 2020-07-09

Guillemette

MASSOT

(AIRBUS)

Updates of the MIS functionalities

0.6 2020-07-28

Kévin LEPRETRE

+ Guillemette

MASSOT

(AIRBUS)

Refinement of the two sequence diagram describing first

enrolment + Add of a figure to describe the check of the

Certificate Authority Chain

0.7 2020-07-29

Guillemette

MASSOT

(AIRBUS)

Add of section 2.3 : Deployment of the security components in

the use casesõ infrastructure + refinement of section 2.3 to

answer reviewersõ comments

0.8 2020-07-31
Kévin LEPRETRE

(AIRBUS)
Update of the IAS HMI screenshots and legends

0.9 2020-08-07

Guillemette

MASSOT

(AIRBUS)

Refinement of the overall deliverable taking into account LINKS

review comments

0.10 2020-08-24

Guillemette

MASSOT

(AIRBUS)

Refinement of the overall deliverable taking into account LINKS

(Xu TAO) and IM review comments

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D5.2

Initial AAA layer for IoT cross platform models

Final - 04 September 2020
Page 3 of 41

Review History

Version
Review

Date
Reviewer Summary of Comments

0.1 2020-08-03
Davide Conzon

(LINKS)
Approved with minor comments

0.2 2020-08-12
Blanca BECEIRO REY

(IM)
Approved with minor comments

0.3 2020-08-24 Xu TAO (LINKS) Approved with minor comments

Table of Contents

Document History .. 2

Review History ... 3

Table of Contents ... 4

1 Introduction .. 5

1.1 Scope .. 5

1.2 Related documents.. 5

2 AAA layer description and implementation ... 6

2.1 Authentication, Authorization and Accounting between Users - IoT sensors/actuators - complex

cyber physical systems and cloud based application ... 8

2.2 Authentication, Authorization and Accounting in the BRAIN -IoT Fabric (between Nodes) 19

2.3 Deployment of the security components in the use casesõ infrastructures .. 26

3 AAA layer demonstration .. 29

4 Answer to reviewersõ comments .. 34

5 Conclusion ... 35

Acronyms ... 37

List of figures .. 37

List of tables .. 38

Annex... 39

1 Introduction

This document reports the activities performed in Task 5.2. This task aims at designing and implementing an

Authentication, Authorization and Accounting (AAA) layer in order to provide security and trust for the

BRAIN-IoT system. This layer ensures Authentication and Access Management to allow only enrolled and

authorized devices or users to access a service. It aims at overcoming the current state-of-the-art by:

- Providing only one solution to manage Users and Devices authentication and access control

- Ensuring strong authentication for low power devices

- Optimizing key management

Actually, the large number of devices and their specificities in IoT system lead indeed to complex

management activities with high operating costs, especially regarding security management: identity,

cryptographic keys and right management.

1.1 Scope

This deliverable presents one aspect of the security capacities put in place in the BRAIN-IoT architecture: the

Authentication, Authorization and Accountability.

In the BRAIN-IoT architecture, the AAA layer aims at:

- Ensuring that only authenticated and authorized external entities (users, IoT sensors/actuators and CPS)

of the BRAIN-IoT Fabrics can send message to these Fabrics.

- Ensuring that messages exchanged in a BRAIN-IoT Fabric are authenticated and that their integrity is

proven.

1.2 Related documents

ID Title Reference Version Date

[RD.1]
BRAIN-IoT_D2.7_Updated Architecture and Test

Sites Specifications
 1.0 -

1

[RD.2]
BRAIN-IoT_D5.2_Initial AAA layer for IoT cross

platform models
 1.0 Mar-2018

[RD.3]
BRAIN-IoT_D5.8_End-to-end data security layer for

IoT cross platform models
 1.0 -

2

1
 Not delivered at the time this deliverable was written

2
 Not delivered at the time this deliverable was written

2 AAA layer description and implementation

The Authentication, Authorization and Accounting layer of the BRAIN-IoT architecture is composed of the six

following components:

- Identity Administration Service (IAS)

- Authentication Backend

- Authorization Backend

- Message Integrity Service (MIS)

- Security Module

- Secured Gateway Service (SGS)

This section aims at presenting their role, their functionalities and their implementation. It is indeed not

possible to give full access to the AAA layer, however section 3 demonstrates them through screenshots and

gives the link to the platform where they are deployed. Moreover, they will be demonstrated during the final

review through live demos.

For each component the limitations identified in the state -of-the-art will be reminded to validate their added

value in the BRAIN-IoT project.

The following Figure 1: BRAIN-IoT Architecture presents the updated BRAIN-IoT architecture and highlights

the components playing a role in the AAA layer, which are circled in green. This figure illustrated at a high

level the interactions of these components with the rest of the BRAIN-IoT Architecture, including the

execution platform, the devicesê

Compared to the first version of the AAA layer for IoT cross platform models describes in D5.2, some

components have been removed from the BRAIN-IoT architecture like:

- The Authentication Service, which was a proxy to the Authentication Backend. This component is no

more needed as the BRAIN-IoT Fabric is directly connected to the Internet.

- The Auditing Service, which was a proxy to the Auditing Backend. This component is no more

needed for the same reasons as the Authentication Service.

- The Auditing Backend. It has been removed by partners to focus the limited resources of the BRAIN-

IoT project on innovative components. For this one indeed, no limitations in the state-of-the-art were

identified, so it was only an implementation of security good practices.

Figure 1: BRAIN-IoT Architecture

2.1 Authentication, Authorization and Accounting between Users - IoT sensors/actuators - complex

cyber physical systems and cloud based application

This section describes how authentication, authorization and accounting is implemented to ensure that only

authenticated and authorized external, that means outside BRAIN-IoT Fabrics, entities (users, IoT

sensors/actuators or CPS) can send data to BRAIN-IoT Fabrics.

This is realized by four components, described in the following section.

2.1.1 Components description for the AAA layer used between Users - IoT

sensors/actuators - complex cyber physical systems and cloud based application

2.1.1.1 The Identity Administrat ion Service

It is the identities and rights referential and also the application to manage users, devices and their rights.

The IAS allows adding new identities to the Authentication Backend and then associates them permissions in

the Authorization Backend, but also removing some and revoking their rights.

Partners have identified one limitation in this domain: existing solutions are divided into two categories:

- Identity and Access Management solution: offering Identity and Access Management for users,

- Device management.

There are no solutions gathering these two categories, even if Users and Devices need similar management

capabilities and have to face common cyber-attacks. So, in the BRAIN-IoT project, partners propose to have

one unique interface to manage both users and devices. To do so, partners have developed an add-on to

Airbus existing (user) IAM solution (named CymID) to include devices management.

Moreover the IAS allows devices to self register, which reduces time and cost needed to deploy a huge

number of secure IoT devices. This process is started by the Security Module and is further described in

section 2.1.2.1 for IoT sensors/actuators and in section 2.1.2.2 for CPS.

It is essential to mention that the IAS, the Authentication Backend and the Authorization Backend are not

deployed in the BRAIN-IoT Fabric but are distributed in order to be shared between multiple fabrics and so

to be adapted to cross platform models.

2.1.1.2 Authentication Backend

The Authentication Backend receives identity information of users or devices and validates them with the

information gathered in the IAS. If the identity is well registered in the IAS, the Authentication Backend

produces a response with the generated credentials. These credentials can be a token in case of users, an

encrypted shared secret in case of low power devices (IoT sensors and actuators) or a certificate in case of

power devices (Complex Cyber Physical System).

a) Users token

Authentication of users is based on Airbus existing solution CymID. This solution support main authentication

mechanisms such as Kerberos, login / password, certificates, etc. It also supports Identity Federation such as

SAMLv2 and OpenID Connect in order to rely on third party authentication services.

As proof of the identity, CymID uses JSON Web Token (JWT). These JSON-based open standard (RFC 7519
3
)

tokens are a list of claims signed by the Authentication Service that delivers it. An example of JSON Web

Token is given in Figure 2: JSON Web Token.

Figure 2: JSON Web Token

These tokens will be verified by the Authorization Service to determine if a data access request should be

allowed or not.

Even if this functionality is operational and available, it is not demonstrated in the two security scenarios of

the BRAIN-IoT project as at the time this deliverable was written no application asked to use this user

authentication solution.

b) Shared secrets for IoT sensors/actuators

Authentication of IoT sensors/actuators is a key component of the innovative end -to-end security layer

developed by Airbus CyberSecurity in the BRAIN-IoT project. This solution ensures the authentication,

integrity and confident iality of data exchanged over the network. It has been especially designed for highly

constrained devices that communicate over Low Power Wide Area Network (LPWAN). A precise description

of this solution can be found in the deliverable D5.8 ð End-to-end data security layer for IoT cross platform

models.

3
 https://tools.ietf.org/html/rfc7519

The end-to-end security layer is based on the use of symmetric cryptography to encrypt and authenticate

communications between IoT sensors/actuators and the BRAIN-IoT Fabric. The solution consists of the

fol lowing functionalities:

ü Automatic device self-enrolment

ü Two-factor authentication

ü End-to-end bi-directional encryption and authentication of application data

To achieve these three functionalities, the Authentication Backend is needed. The section 2.1.2.1 describes

precisely the role of the Authentication Backend and its interactions with the other AAA layer components

such as the Security Module.

c) Certificates for Complex Cyber Physical Systems

Authentication and encryption for Complex Cyber Physical Systems will rely on the same components as IoT

sensors/actuators that mean Security Module, Secured Gateway Service and Authentication Backend.

However components will have slightly different roles /composition due to the difference of physical

capacities between CPS and IoT sensors/actuators.

As CPS have indeed fewer constraints in terms of network bandwidth and computing power than IoT

sensors/actuators, their authentication can be based on more conventional technologies for securing

network communications. Therefore it is possible to use widely recognized protocols like TLS, which has been

chosen by BRAIN-IoT partners to secure the communications between CPS (like the Robots) and the BRAIN-

IoT Fabric. This protocol, widely used, is recommended since the 2000õs to establish secured connection with

an HTTP server (RFC2818
4
 about HTTP over TLS). Partners have chosen a security protocol at the transport

layer level to be independent of the application p rotocols and have less impact during integration. The

section 2.1.2.2 describes precisely the role of the Authentication Backend and its interactions with the other

AAA layer components such as the Security Module.

2.1.1.3 Authorization Backend

The Authorization Backend offers access control capabilities for other services based on rights previously set

through the H uman Machine Interface of the Identity Administration Service. It will use the security token,

the certificate or the encrypted shared secret to verify users/power devices/low power devices identity and

establish whether or not the request is legitimate.

Other components interact with it to obtain the list of rights of a device. The Authorization Backend is also in

charge of keeping the list of revoked devices up to date and spreading it to components using its services.

2.1.1.4 Security Module

The Security Module is one brick of the innovative solution proposed by the BRAIN-IoT project for end-to-

end data security and precisely described in D5.8. However the part of the security module dedicated to

devices authentication is further described in this section.

In the case of IoT sensor/actuator, the Security Module is a light security software used to authenticate and

encrypt any data sent over the network at application level, with reduced energy consumption. To

authenticate the data, it relies on the Authentication Backend. More info rmation on the implementation of

4
 https://tools.ietf.org/html/rfc2818

the Security Module in the case of IoT sensor/actuator and its interaction with the other AAA layer

components is described in the section 2.1.2.1.

For CPSs, which have enough computation power to implement certificates management, the Security

Module includes an Enrolment over Secure Transport (EST) client in order to retrieve a certificate to the

Authentication Backend and implement a mutual TLS (mTLS). More information on the implementation of

the Security Module in the case of CPS and its interaction with the other AAA layer components is described

in the section 2.1.2.2.

2.1.2 Implementation of the AAA layer between Users - IoT sensors/actuators - complex

cyber physical systems and cloud based application

2.1.2.1 Implementation of the AAA layer between IoT sensors/actuators and cloud based application

This section aims at precisely describing the interaction between the AAA layer components in order to

ensure the authentication, authorization and accounting for the IoT sensors/actuators. Figure 5: Sequence

diagram of IoT sensor/actuator first enrolment summarizes these interactions through a sequence diagram. It

is however essential to precise that the internal process of the EventBus, and specially the authentication and

integrity check done by the MIS, are not presented in this sequence diagram to not overload the figure, but

are presented in section 2.2.

1) Automatic device self enrolment

Before IoT sensors/actuators can send an enrolment request to the BRAIN-IoT Fabric, they must have a

Device Administration Key. This key is derived by the Authentication Backend from public IoT devicesõ

identity elements (device identifier, registration timestamp, etc) and a secret Master Administration Key

stored securely on the server of the Authentication Backend, as illustrated in Figure 3: Device Administration

Key derivation. Once calculated the Device Administration Key is added by an integrator to the Security

Module configuration file. As LoRa networks and applications keys, this key is securely stored in persistent

memory of the IoT Device. The key derivation function prevents the Master Administration Key from being

retrieved from the derived keys. So, if a malicious user extracts the Device Administration Key from the IoT

sensor/actuator, he will not be able to retrieve the Master Administration key and to impact other devices

using Device Administration Keys derived from the same Master Administration Key.

Figure 3: Device Administration Key derivation

The next steps of the first enrolment are listed below and depicted in the sequence diagram (Figure 5:

Sequence diagram of IoT sensor/actuator first enrolment)

Step 3 and 4 - Once the Device Administration Key has been integrated in the configuration file of the

Security Module, this latest is able to generate at the first boot of the device an Enrolment Request. The

Enrolment Request is encrypted and authenticated with the Device Administration Key.

Step 5 - This request is sent to the BRAIN-IoT Fabric using LPWAN network facilities.

Step 6 - A specific connector (SensiNact Edge Node), present in the Fabric, received the data thanks to a

Message Queuing Telemetry Transport (MQTT) connection.

Step 7 - Then the connector sends the encrypted and authenticated data to the Secured Gateway Service

through the EventBus. It is essential to precise that in this section we do not detail the process put in place in

the BRAIN-IoT to ensure integrity of the message through the EventBus. Details are given in Section 2.2.

Step 8 - The SGS analyzes if what he has received is an Enrolment Request.

Step 9 - If yes, the SGS contacts the Authentication Backend through its REST API and transfers it the request.

Step 10 - On its own, the Authentication Backend derives on the fly the Device Administration Key from the

IoT sender based on the secret Master Administration Key and the public information of the device. With this

key, it tries to decrypt and authenticate the received message. If it is a failure, an error is returned to the SGS

(Step 13), whereas in case of a success, the processing continues.

Step 11 - At this step the Authentication Backend has authenticated the device thanks to the Device

Administration Key and derives another key called Device Runtime Key from three elements: the Master

Runtime Key, the Gateway Runtime Key and public IoT device information. The two first Keys are secret keys

securely stored or derived by the Authentication Backend. Figure 4: Device Runtime Key derivation depicts

the derivation of the Device Runtime Key.

Figure 4: Device Runtime Key derivation

Step 12 - Then the Device Runtime Key is encrypted and authenticated using the Device Administration Key

and returned to the SGS.

Step 14 - The SGS sends the received information through the EventBus to the SensiNact Edge Node, which

transfers the data to the IoT Network (Step 15).

Step 16 - It uses the downlink of the LPWAN network to forward it to the IoT sensor/actuator.

Step 17, 18, 19 and 20 - The message is delivered by the IoT device to the Security Module that decrypts and

authenticates it with its own Device Administration Key and stores securely in persistent memory the received

Device Runtime Key. The Security Module associates this Key with a message counter, which is incremented

each time this one is used to encrypt a message. When the counter reaches a predefined maximum value,

the Security Module forces the IoT sensor/actuator to renew the Enrolment Request to retrieve a new Device

Runtime Key.

2) Two factor authentication

To ensure strong authentication, another element named Fingerprint is used in addition of the Device

Administration/Runtime Key as a second authentication factor. The Fingerprint is a synthesis value of

hardware and software intrinsic properties calculated locally by the Security Module. The hardware properties

can be fixed registers, peripherals identifiers connected to the MCU..., and the software ones can be the

version number of the firmware, the memory checksumê The Fingerprint calculation function is defined by

the integrator of the Security Module as it requires knowledges on the IoT sensor/actuator. Furthermore, if

the IoT sensor/actuator has already a physical security equipment such as a Secure Element, then this one

should be used to compute the Fingerprint.

Once computed (Step 2 in Figure 5: Sequence diagram of IoT sensor/actuator first enrolment), the

Fingerprint is added in the payload of the first Enrolment Request and each time a new Enrolment Request is

sent to retrieve a new Device Runtime Key. For each Enrolment Request received, the Authentication Backend

compares the Fingerprint value with the previous one stored. If they are not equal, the Authentication

Backend sends an error to the SGS and requests the Identity Administration Service to blacklist the (emitter)

IoT sensor/actuator. To authorize again the IoT device, an action should be performed by an operation on

the HMI of the IAS. Following that the IoT sensor/actuator will be able to send again Enrolment Request.

Figure 5: Sequence diagram of IoT sensor/actuator first enrolment

BRAIN-IoT Fabric Secured IoT Sensor/Actuator

BRAIN-IoT Fabric Secured IoT Sensor/Actuator

3) End-to-end bi-directional encryption and authentication of application data

As detailed previously, the Authentication Backend is a key component of the end-to-end security layer.

After the enrollment phase, the IoT sensors/actuators send data to the BRAIN-IoT Fabric using the same

cryptographic processes. The major difference is the use of the Device Runtime Key rather than the Device

Administration Key to encrypt and authenticate the exchanged messages.

When the IoT sensor/actuator wants to send data, it calls the Security Module to encrypt and authenticate

them. The IoT device retrieves the message (encrypted and authenticated data) from the Security Module

and sends it by LPWAN. The message is received by the SensiNact Edge Node in the BRAIN-IoT Fabric, which

sends it to the SGS through the EventBus. Then SGS checks the integrity and the authenticity of the message

and decrypts it without using the Authentication Backend. This is possible because the SGS has enrolled itself

to the Authentication Backend to retrieve a Gateway Runtime Key, which is used as an intermediate key to

compute the Device Runtime Key, as presented previously. If the SGS successes to decrypt and authenticate

the message, the decrypted data are sent to the Edge Server, which is in the case of BRAIN-IoT SensiNact,

through the EventBus. Otherwise, the SGS produces an error on the EventBus.

Moreover, if the BRAIN-IoT Fabric wants to send data to the IoT sensor/actuator, these one should be first

sent to the SGS to be encrypted and authenticated. When the IoT Device will receive them from LPWAN

downlink, it will use the Security Module to check their integrity and authenticity and then decrypt the data

before doing any action with them. Details on the implementation of the end -to-end data security layer are

described in D5.8.

2.1.2.2 Implementation of the AAA layer between CPS and cloud based application

The establishment of a secure TLS connection is based on the negotiation of a symmetric key to encrypt and

authenticate subsequent exchanges between a Server and a Client. This phase of negotiation is called TLS

Handshake. It is performed using asymmetric keys and certificates. During the Handshake, by default, only

the Client checks the authenticity of the Server. To perform this authentication, the Client must have a local

trust list of Certificate Authorities (CA) that it considers as trustworthy. During the negotiation, the Client

verifies the certificate presented by the Server. The negotiation can only continue if the certificate of the

Server is valid and has been signed by a CA of the CA trust list stored on the Client machine. A particular

mode of TLS can be enabled in the configuration of the Server to ensure the authentication of the Client too.

This mode is sometimes called mTLS for mutual TLS. In this case, the Client must present a valid certificate

signed by a CA configured in the Server side. In the BRAIN-IoT project, the CPS and the BRAIN-IoT Fabrics

are configured to use this mutual authentication. The mTLS implies that the CPS have certificates signed by a

dedicated CA. This is done by the Authentication Backend after authenticating them. In the project we use

the EST (Enrolment over Secure Transport) protocol to automatically deliver certificates to the CPS. This

protocol is described in the RFC 7030
5
.

The Security Module embedded on the CPS integrates an EST Client. The client is configured to send

requests to the Authentication Backend. The request, illustrated in Figure 6: Sequence diagram of CPS first

enrolment , is realized by following these steps:

Step 4 and 5 ð Call the Authorization Backend to retrieve the list of trusted CA, which issue certificates.

Step 6 ð Create an asymmetric key pair.

5
 https://tools.ietf.org/html/rfc7030

Step 7 ð Produce a Certificate Signing Request (CSR) and sign the request with the previously computed

private key.

Step 8 ð The EST client then requests the Authentication Backend with the CSR.

Step 9 ð The Authentication Backend checks the request by using the HTTP headers. It verifies the value of

the Basic Authorization (as described in the RFC 7030) and the signature of the CSR. If all conditions are

satisfied, the Authentication Backend proceeds to the signature of the CSR.

Step 10 ð Then the certificate is sent back to the CPS.

Step 11 ð The CPS configures the machine to use the received certificate and the associated key pair.

Certificates have a period of validity. This period is configurable at the level of the Authentication Backend.

The CPS can re-new their certificate by sending a new request to the Authentication Backend before the end

of their current certificate validity. During this re -enrolment, the Authentication Backend checks the

certificate presented by the CPS before delivering a new one. The purpose of the Security Module embedded

on the CPS is to verify if the CPS has a valid certificate and if not to launch a new enrolment request.

The SGS is in charge of contacting the Authorization Backend to retrieve the CA list allowed to sign the

certificates of the CPS (Step 1 and 2). Each time a TLS connection is created between CPS and the BRAIN-IoT

Fabric, the SGS will be responsible for verifying that the certificate used by the CPS is signed by a CA of the

CA list. This CA list is stored locally by the SGS, which allow other services of the Fabric to have access to it.

Figure 6: Sequence diagram of CPS f irst enrolment

Distributed AAA Server

Distributed AAA Server

2.2 Authentication, Authorization and Accounting in the BRAIN -IoT Fabric (between Nodes)

This section describes how AAA layer is implemented within the Fabric when messages are exchanged

through the EventBus. It relies on mainly two components: the Message Integrity Service and the

Authentication Backend.

2.2.1 Components description for the AAA layer in the BRAIN -IoT Fabric

2.2.1.1 Message Integrity Service

The Message Integrity Service is in charge of ensuring data authentication, integrity and privacy between

nodes in the BRAIN-IoT Fabric. The two first functions ensure to detect and avoid Smart Behaviour

misconfiguration. A misconfigured Smart Behaviour is a SB which receives data from a source A and alters

them without removing the òsource Aó signature, because these produced data can then be taken as original

data from source A, whereas they have been subject to modifications (like average to avoid noisy sensor

data from triggering alarms). So the MIS allows recording the accurate origin of informati on by updating the

signature of a message when this one has been modified. Figure 7: MIS capacities in the case of well

configured Smart illustrates an example of MIS working in the case of well configured Smart Behaviour,

whereas Figure 8: MIS capacities in the case of misconfigured Smart Behaviour highlights a misconfigured

one for which produced data are dropped.

Figure 7: MIS capacities in the case of well configured Smart Behaviour

Figure 8: MIS capacities in the case of misconfig ured Smart Behaviour

