A Cross-Platform Communication Mechanism for ROS-Based Cyber-Physical System

A Cross-Platform Communication Mechanism for ROS-Based Cyber-Physical System
31 Downloads

Abstract: Recently, one of the main research topics in the context of application of Cyber-Physical System (CPS) in the Smart City and Industry 4.0 scenarios is the one related to the use of Robot Operating System (ROS)-based CPS. Specifically, one of the main interest is to allow a ROS-based smart robot communicating with other heterogeneous Internet of Things (IoT) applications in an intelligent environment to efficiently react to the system requirements and environment changes. However, the communication between the IoT systems will face many challenges and increase the cost and risks that lead to the requirement of a cross-platform communication for bridging the ROS-based CPS and other heterogeneous IoT applications.
This paper introduces ROS Edge Node for the interoperability between Robotics domain and other IoT domains, leveraging the highly modular BRAIN-IoT federation, which allows to decentralize, compose and dynamically federate the heterogeneous IoT platforms using OSGi specification, thanks to its dynamic modularity and wide usage in IoT middlewares. Together with the flexible integration with existing IoT devices/platforms within BRAIN-IoT platform, the event-driven asynchronous communication mechanism realizes cross-platform interaction with ROSbased CPS and solves the major challenges faced. This communication mechanism allows dynamic deployment of new functionalities for enhancing/extending the behaviour of robots according to external events. In addition, some specific behaviours to new ”virgin” robots, which might be needed to extend the fleet of robots or replace damaged/low batteries ones can be dynamically deployed at the setup phase. In BRAIN-IoT platform, Edge Node behaves as IoT devices/platform adaptors which integrate the existing IoT devices/platforms. The ROS Edge Node is one type of the Edge Node, which bridges the underlying ROSbased robotics systems and BRAIN-IoT execution environment, thus communicates with various IoT systems connected to the BRAIN-IoT platform. A Service Robotic use case is developed to demonstrate the proposed solution, it shows how the ROS Edge Node enables the fast adaptivity and interoperability between heterogeneous IoT domains in a federated environment.