universiTe 25 S BT ‘ I .
_LlNKS Egﬁrenoble :’r.o Paremus lllmkuwmg ” SIEMENS ES:L[PSE ‘ LBQ\IE AIRBUS *3Robotnik oemQLCSQ

&5 = bl metrics Tl lingeuity for Gfe

0.0 g
o @

BRAIN-IeT

Acty Nt , loT
D4.5 - Final Deployment and operation enablers

Deliverable ID D4.5
Deliverable Title Final Deployment and operation enablers

Work Package WP4

Dissemination Level PUBLIC

Version 1.0
Date 2021-03-31

Status Final

Lead Editor Kentyou

Main Contributors LeventGurgen (Kentyou) christophe Munilla (Kentyou), Rui Zhao
(LINKS)

Published by the BRAIN-I0T Consortium

This project has received funding from the Europear

and innovation programme under grant agreement No 780089.

[S A
e B R A IN loT

‘BRAIN-IeT

Version Date Author(s) Description
0.1 2020-09-11 Levent Gurgen (KENT) First TOC
0.2 | 2020-10-29 Xu Tao (LINKS) Update TOC
0.3 | 2021-01-29 | Christophe Munilla (Kentyou) Added section 4 and 6 with few comments
0.4 2021-02-05 Nigel Squibb (Paremus) Added section 3
0.8 2021-02-15 Rui Zhao (LINKS) Added section 2 and 5 with few comments to section 3
0.9 2021-02-16 Christophe Munilla (Kentyou) Version ready for review
1.0 | 2021-03-31 | Christophe Munilla (Kentyou) Finalized the delivery
Version Review Date Reviewer Summary of Comments
09 2021-02-30 Davide Conzon (LINKS Approved with minor comments.
09 2021-03-08 Manuel Miranda (IM) Approved with minor comments.

Page 2 of 47

R R A IN loT
BRAIN-leT
DOCUMENT HISTOTYcieiitiieee ittt ettt ettt s bttt e sttt e e e e e s bt et e e s s e et e e e ea b e et e e aak ettt e s mnn e e e e anbb et e e sasbneeesannneeeenannneees 2.
LAY LoV 1S (o] 7R 2....
LI o] (=20 o 1 (=1 £ PP UPRRTRT 3.
1 1] To [N Tt o] o PSPPSR S
R S Voo o 1P PP PTTTPT 4....
R =T 1 =T o To ol N g T=T o £ PR PRP 4..
1.3 Related Brain|oT SOUrCEREPOSIHONIES......cccuuiiiiiiiiee e i e it e e e e e e s st e e e e e e e s ssar e e e e e e e s sssannreareeeeeesaannne 5....
2 L@ YT VTV AT a1 = =1 o [1 PO ERPPPSY 6.
3 BRAINIOT FabriC INfrAStIUCIUIE.eii ittt sttt e e s st e e e s sebe e e e s snbeeeessnnreeee e e 7.
0 I O U1 1o o I S T= o P YT 11 PSRRI 8..
3.2 GENEIIC BERNAVIOUIS. ...ttt e e e e e e e bbbt e et e e e e e s e aannr e e e e e e e e e s e snnnnrnneeas 8.
3.3 Behaviour UpPdate DEIIVETY........coiiiiieiiiie ettt ettt ettt e s e s st e e e e sibe e e e e sbae e e e annnes 9.
4 SENSINACE EAGE NOUE.....coiiiiiiie ittt et e e s s b b et e e s bbb et e s aabe e e e e sbbb e e e s annreeean 11.
5 WoT-enabled ROS EAQE NOUE......ccooiiieie i 14
5.1 Background and REQUIFEMENTS........coiiuiiiiiiiiiiie ittt et e s st e e e sibe e e e e sanees 14
5.2 ReIeVANt TECHNOIOGIES. ... uutiiiiiiiiiiiiiiitii s a s e e e e e e e e e e e s e e e e e e e e s e e e e e e eaaeaaaaaaaaaaaaaaaes 14..
5.3 ROS Edge NOUE ArCHITECIUI.cciiiiiiiii ittt e st e et e e s eb b e e e s annneeas 15
5.4 Development of WoT-enabled ROS Edge Node: TD and Code GeneratQr.............ocoeeeveeeeeeeeeeeeeeennn. 17.
5.5 SUPPOrtto MOAEIS@RUNTIIME........uuiiiiiiiiiiiiiiiii s s e s e s e s e e e e e e e e e s e e e e eaaaaeaaaaaaaaaaaaaaaees 21
6 T3 = 1= 14T o R PPRRR 23.
00 R |V = 15 7= 1] = Vo= SRS R 23
7 L0 Lo 11T 1 PSR 24.
FaXex 0] 01/ 1 015 PP PSPPI 25
(I o) i 1o U £ PP PP PP PP 25...
S o = o] =S OO PP OPPUPPPPPPRN 26...
ANNEX 1 : Installing Paremus Service FabriC........cccooieiiiiiiiiic e 21...
Background and REGUIFEMENTS.........oiiuiiiiiiiiiie ettt ettt e st e ettt e e e ettt e e s abee e e s abbe e e e e anbeeeesaneeeeeanees 27
INStalling Service FabriC SOMVAIE...........uuiiiiiiiiiiii e e s e s e s e s e e e e e e e aeaaaaeas 27
CONNECHING L0 YOUF FADIICeeiiiiiiiie ittt et e s e et e e s e s bt e e e b ae e e e ennbe e e e e neee 28...
ANNEX 2 : InStalling SENSINGACL......cccciiii ittt ea e 30..
ST TSI 1N ot A0 N =T V=SSR 30
ST 1SN Tt T 1S3 = 1= o) o R SR 30
SENSINACE fIFST EXECULION......eiiiiie ittt e e e e oo e e bbbt e e e e e e e e e s nbbebe e e e e e e e e saanbebeeeeaaaeesaannen 31.
sensiNact- HTTP northbound CalliNg...........ouiiiiiiiioiiiie et 34
ANNEX 3 : Installing SENSINACE STUIO.oc.uueiiiiiiiee ettt e e e e e s e e e e e e e s s eanreeeeeeaeas 39
ANNEX 4: Building and Deplying WoT-enabled ROS Edge Node in BrairloT Fabric.........ccccoccviiiiiiennnnnn 41

Page 3 of 47

0
e B R A IN loT

‘BRAIN-IeT

1.1 Scope

Building a framework for deployment and operation of Internet of Things (loT) service orchestration is a
complex task, since itneeds to address two major challenges:a strong availability and an abstraction layer to
deal with heterogeneous devices. In order to tackle the challenge of availability, the Brain loT project has
chosen to rely on Paremus service Fabrit, which provides discover, search, composition and orchestration of
IoT applications in a distributed changing production environment . Regarding the interaction with
heterogeneous known/unknown IoT applications/ devices, Brain-loT must be flexible enrough to cope the
new and changing discovery mechanisms and requirements.Apart from providing such a flexible BRAIN-loT
infrastructure, it also provides two types of generic Edge Nodes for the connectivity and interoperability to a
large range of 10T applications/devices: the sensiNact enabled Edge Node and the WoT-enabled Edge Node.
The sensiNactenabled Edge Node built based on the Eclipse sensiNact middlewaré has been chosen for its
capability to interact with a wide variety of equipment and protocols, as well as its extensibility mechanisms,
instead the WoT-enabled edge nodes are basd on W3C Web of Things standard® and specifically this
deliverable presents the one implemented to work as an adaptor to the Robot Operating System (ROS}
based Cyberphysical Systems and devices for the interoperation with other heterogeneous loT platforms
and devices due to its generality and the extensibility.

The purpose of deliverable 45 is to finalize the Brain-10T execution platform as described in dD2.7-section 3.2
Development Vi e wgidg the best of those three enablers, thanks to evolutions of the three code-bases in
order to integrate them gracefully. The section 2 of this deliverable will specify the scope of the components
within the BRAIN-10T overall Functional View, the sections 3 will briefly introduce the principle of how BRAIN -
IoT Fabric Infrastructure is able to flexiblly and permitly garantee the load of existing/unexisting loT
services/devices on demand in production environment. The section 4 representes the sensiNactenabled
Edge Nodes practically used in BRAINIOT use casesand the section 5 will represent the implemented WoT-
enabled ROS Edge Nodeused in the Service Robotics domain Finally, Section 6 describes briefly how the
edge nodes are deployed in the Brain-1oT Exécution Platform and Section 7 concludes the deliverabé.

The software stack is finalized in this deliverable. Compared with the initial version of the deliverable D4.2-
I nitial Depl oyment and oper atnotoonly keap ¢hb instalatod instraction of
Paremus Service Fabrichut it will also enrich and supplement the instructions to install the sensiNact Edge
Node, as well as the application in both BRAINIOT use cases. Furthermorethe present document will also
add the complete design and development details of WoT-enabled ROS Edge Node applied in BRAINIOT
Service Robotics use cases well as thedetailed instructions to build and run it in Brain-10T platform.

1.2 Related documents

ID Title Reference ‘ Version Date
[RD.1] InitialDiscoverySearchCompositionandOrchestrationEnablers D4.1 1.0 M10
[RD.2] Initial Enablers for Dynamic Distribution of IoT Behaviour D3.3 1.0 M15
[RD.3] Integrationand Lab Scale Evaluation D6.2 1.0 M12

Ihttps://paremus.com/products/#psf
2 https://projects.eclipse.org/projects/technology.sensinact
3 https://www.w3.org/WoT/

Page 4 of 47

del

https://paremus.com/products/#psf
https://projects.eclipse.org/projects/technology.sensinact
https://www.w3.org/WoT/

o Based R A IN loT
BRAIN-leT
[RD.4] . .
Initial Deployment and operation enablers D4.2 1.0 M15
[RD.5] Final discovery, search, composition and orchestration D44 10 M36
enablers
[RD.6] C .
Final Enablers for dynamic distribution of loT Behaviour D3.7 1.0 M36

Table 1 - Related documents

1.3 Related Brain-loT SourceRepositories

ID Repository Name Links
2 Brain-iot -sensiNact here
3 Brain-iot -sensiNact-smartbehaviour here
4 Brain-iot -sensiNact-warehouse-backend here
5 Brain-iot -sensiNact-Door here
6 Brain-iot-sensiNact-sica here
7 Brain-iot -sensiNact-sica-smartbehaviour here
8 Brain-iot -sensiNact-secured-ttn here
9 Brain-iot-ros-edge-node here
10 Brain-iot-marketplace here
11 Brain-iot -message-integrity -service here
12 Brain-iot -fabric-systems here

Table 2 - Related BRAIN -10T Source Repositories

Page 5 of 47

https://github.com/eclipse-researchlabs/brain-iot-sensiNact
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-smartbehaviour
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-warehouse-backend
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-Door
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-sica
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-sica-smartbehaviour
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-secured-ttn
https://github.com/eclipse-researchlabs/brain-iot-ros-edge-node
https://github.com/eclipse-researchlabs/brain-iot-marketplace
https://github.com/eclipse-researchlabs/brain-iot-message-integrity-service
https://github.com/eclipse-researchlabs/brain-iot-fabric-systems

‘BRAIN-IeT

R A IN loT

BRAIN 0T platform provides an a distributed and highly modular federated environment enabling
the the dynamic deployment, orchestration and monitoring of distributed applications and uniquely,
automatically installing new behavioursin response to environment triggers and user events. One of the
significant functionalities is to provide the dynamic connectivity
to heterogeneous loT systems/devicesthrough the BRAIN-IoT Interoperability Layer as shown in Figure 1.A
red rectangle highlights the two kind of BRAIN-IoT Edge Nodesproviding the interoperability with other l1oT
devices and platforms within BRAIN-I0T framework.

1 SensiNact-enabled Edge Nodes: The edge nodes based on Eclipse sensiNact for providing
connectivity, interoperability, data processing to various IoT devices.
1 WoT-enabled Edge Nodes: The edeg nodes generated from the Web of Things (WoT) Thing
Description 5 (TD), one provided by BRAIN-IoT is the WoT-enabled ROS Edge Node
allowing the interoperability with ROS -based loT platforms/devices.

___ J
T T i T T T Meommumimandtmegenen | [auemicimer | 7T awersees
Layer I I I Development Toolkit
T e gt | || [eramsormodelingTool |
3} i uersmavor H
— l | | N

Privacy Control System
Message
Intearity.
Service

| |
| [
| [
[L J |
| [
| (BIP Modelling & | I
I _____________ I BIP Code Validation Tool I

B |
| ,—] L, .
| [
| 2 |
| [
| [
| |
-

| connectivity REST WS Loka SICA API Medusa APl ROS APY EoWT A
I Layer Env. API I

e e B S = o e e D 1
I = I i [-] [o] I
| emE e £ e |

Figure 1 - Edge Nodes in Brain -1oT Functional Overview

The edge nodes in BRAINIOT Interoperability Layer will be build/released as BRAINIOT Services in the
BRAINIoT Service Repositorypresented in D4.6, then deployed in the BRAIN-10T Fabiic presented in D3.7
built upon the Paremus Service Fabric presented in D4.4, all located in the Communication and Management
layer represented in D2.7-section3.2. This deliverable will focus on thedevelopment and the functionalities of
the Edge Nodes.

4 https://projects.eclipse.org/proposals/eclipse -sensinact
5 https://www.w3.0rg/TR/wot -thing -description/

Page 6 of 47

https://projects.eclipse.org/proposals/eclipse-sensinact
https://www.w3.org/TR/wot-thing-description/

i85
SO
»

‘BRAIN-IeT

R A IN loT

The Paremus Service Fabric is a lightweight & resource agnostic distributed runtime; able to run on a single
Raspberry Pi or across 10, 00 8.0Tke Serfice palnc ssi actaghly noodularv i r t u
OS Gi E /-bhhsed rantime platform that can dynamically assemble composite applications or manage more

traditional Micro Service / Container based deployments. A Service Fabric is operationally simple to install

and manage 0 with core management services being selfconfiguring and self-repairing. Fabrics provide

secure encrypted communications between all participants; the OSGi software artefacts being used at each

point in time, and the provenance of those artefacts, always known. The Service Fabric provided the runtime
foundations for BRAIN-10T project.

As implemented, the Brain-10T Fabric is an OSGI based structurally modular environment; hence the use of
alternative implementations of functional components and/or alternate protocols is possible and may be
explored by future interested parties. The major and unique development within the Brain -10T project is the
implementation of the "Event Bus". This allows the Fabric to load and run new processes based on extenal
events - for instance, a security light being switched on by its own sensor, or a a sensor being triggered when
a robot approaches or a door, or when the water level in a dam reaches a pre-determined level.

It must be understood that the Brain -1oT Brent Bus is not simply a piece of software reacting to an external
event, but a complete and powerful system permitting arbitrary and previously unknown physical events to
load and run whole new software applications, which may change the entire way the I0T system works.

The BrainloT Fabricis a stand-alone fabric in its own right, and does not rely on use of the Paremus Service
Fabric product, although it builds heavily upon the concepts used by Paremus Ltd. This is discussed at length
inD4.4

What are we trying to achieve with the infrastructure? The infrastructure is designed to flexibly apply and
modify both common and / or unique Behaviour patterns across the entire set of "Things" contained within
the IoT system under consideration. Again, this 5 detailed in D4.4.

The general concepts used in BRAINIOT infrastructure are the following:
1 Edge Node - A Java / OSGi entity that interacts with the local Fabric and 'Things'-

o the Edge Node may pull behaviours / software updates from its local fabric or send metrics
to the local Fabric.

o The Edge Node may or may not be a full member the Local Fabric. If it is not a member of
the local fabric then it must be trusted by the local fabric, potentially by being federated into
it.

o While initially Edge Nodes will be a pre-configured 'stack’ - later the Edge Node may be able
to consume a TD, map relevant portions to OSGi Requirements and assemble required
bindings and parsers in response

I Thing - A Physical Entities- Sensors or Actuators that can be controlled by software.

1 Thing Description (TD) - the W3C description if the 'Thing' - this description may be sourced from
the 'Thing' itself or from a Thing Device Directory. A TD is instance 'specific' - i.e. may be tied to the
Serial number of the Thing.

1 Thing Template (TT) - A generic TD description that is not tied to specific 'Thing' instances.

1 Thing Device Directory (TDD) - a repository of Thing Descriptions & Templates.

1 Servient - An entity that publishesa TD/TT

1 Behaviour Repository - a repository of software behaviours - these artefacts Java/OSGi bundles

Page 7 of 47

“BRAIN-leT

R A IN loT

3.1 Custom Behaviours

By custom behaviour, we mean a behaviour specific to a particular physical "Thing’, the "Thing" is a physical
entities (i.e. Sensor or Actuator)that can be controlled by software.

1 Customized Behaviours are keyed on the 'Thing' Identity, i.e. they apply to a specific sensor or
actuator (for example a main control valve in a water pumping station)
o If specific 'Thing' instancesa Thing Description (TD);
o if a setof 'Thing' instances aThing Template® (TT).
1 Customized behaviours may be able to interact directly with the "Thing™ without a TD
1 Or interact with the "Thing" via the use of the embedded TT.
o In the Brain-loT scenario, it is undesirable to embed a TD as this restricts the Smart
Behaviour to a specific Instance of a specific Type of Thing.
0 Itis better to embed the TT and generate the TD with respect to the specific Thing being
interacted with.

Initally, custom behaviours are generally loaded upfront and are available to the Edge Nodes from the local
Fabric behaviour repository, but one of the important strengths of the Brain -10T fabric is the ability to change
the behaviours available, either by manual operation or in response to events transiting the event bus (see
Figure 2). This autonomic and dynamic reconfiguration of Thing behaviour is unique to the Brain-IoT fabric.

Smart Sensors/Actuators

Apply Behaviour

Brain-l0T Fabric

Return Behaviour Definition

Figure 2- Customized model

3.2 Generic Behaviours

Should there be no pre-existing Custom Behaviour exists then a Generic Behaviour may be automatically
generated by Brain I0T. This may be

1 Based on existing understanding and / or rules of the system itself.
o It may be a required Generic Behaviour, e.g. a light switch behaviour - lights should be
switched on by a robot when it enters the room if they are off
o It may be combined with a specific TT -- i.e. this is how I interact with THIS specific type of
light switch.
1 The resultant dynamically composed Generic Behaviour nay

6 https://www.w3.org/TR/wot -binding -templates/

Page 8 of 47

https://www.w3.org/TR/wot-binding-templates/

& L

RAIN-leT

I‘ R A IN loT

s

o0 Have the TT embedded.
o Or the Generic Behaviour may dynamically download the required TT (or if an instance
specific TD exists) from the TDD.

Not e: A TD is sourced from a Oser vi @lhough pwdentsdeuritg an c o
policies must be consdiered)

See- https://www.w3.0rg/TR/wot -architecture/#wot -deployment-scenarios-and-guidelines

In BRAINIOT the TDD is the root source of Thing Descriptions based on identifiers/classifiers (i.e. it is the

servient). However, if the Behaviour has an embedded TT (i.e the behaviour is specific to the device) - then

the Smart Bundle is the local Servient. The deploment of generic behaviours is shown inFigure 3.

Smart Sensors/Actuators

Fabric Identifies device Behaviour loaded

Brain-10T Fabric

Edge Node queries Fabric

Figure 3 0 Generic Model
3.3 Behaviour Update Delivery

1 For pre-defined / pre -configured behaviours (e.g. a State Machine) the update behaviour is the same
as any other Bundle.

1 However, some "Smart Behaviours™ may require training in the runtime environment - e.g. ML or an
AAN.

1 This training may occur in any Fabric (local or remote as appropriate)with the training data streamed
from the live environment.

1 Once a desired level d Confidence has been achievedthe trained Behaviour may be promoted to a
Custom or Generic behaviour available for- as appropriate - Remote / Local or Edge Node
deployment.

The flow for updating the changed services at BRAINIOT runtime is shown in Figure 4.

Page 9 of 47

https://www.w3.org/TR/wot-architecture/#wot-deployment-scenarios-and-guidelines

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized 10T systems

‘BRAIN-IeT

Smart Sensors/Actuators

Behaviour
Repository

Apply updated Behaviour

Push Behaviour Definition

Figure 4- Updates delivering model

Deliverable nr. | D4.5
Deliverable Title | Initial Deployment and operation enablers Page 100f 47
Version | 1.00 31 March 2021

e® B R A IN loT

‘BRAIN-IeT

Brain-1oT aims at creating highly scalable and adaptive processingdFabricsd o n ,@fif;meeded detached
from the Internet in a fully autonomous manner; it allows to distribute sensiNact gateway instances among
edge nodes connected to each others. (See ANNEXE 1, 2 for thaletailed installation steps)

DEVELOPPERS

develop, deploy,
monitor, manage

APls APls

Figure 5: sensiNact inBRAIN-l0T

The first described integrated architecture was defining two logical components based on sensiNact whose
respective roles were on one hand to manage the lifecycle of sensiNact gateway instances in the BrainloT
Fabric, and on the other hand to connect to external devices/services required by the specified use
cases.While developing complementary modules for the project it appeared more relevant and efficient to
delegate the lifecycle management to the Fabric itself using BrainloT Services (previously known as Smart
Behaviours). This management has beenalso made possible by the extended intermediation role played by
sensiNact in an increasing number of use casesthe deployment of sensiNact gateway instances is directly
related to those of BrainloT Services provided by its modules and implied in the intermediation between
internal components. Each sensiNact Gateway asynchronously interacts with BrainloT Services ing the
Brain-10T Event Bus implementation

For t he EMALCSAD®S wigahagementj thé SIEA systamc tegponsible of the critical

infrastructure; the sOnar anomalies detector framework; as well as the Papyrus control model in charge of
generating sensiNact Applications.

Page 11of 47

RAIN-leT

9.

e

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized loT systems

EventBus

Iy
a
AnomaliesDetectionMessage
MeasuresEvent
5

[AT TS v

i 1

: ot st bt i sOnar

: RecurrentSicaTask sensiNact smart behaviou :

| 1

| , E

: notify 0 :

| sens e al<

E.- _S _e _n_s_l I:‘_a_cf _________ actuate E ‘ql/
Papyrus

Figure 6: sensiNact and critical water infrastructure control components

For the Robotnik Manufacture use case, the elevator/door APl as well as the warehouse backend
configuration and monitor ing.

EventBus
3] ol] i 511 —7
Cocememone]| [rssscaneponey] || Ooorststumeponse
Conacet] 4 10 —— | OpenDoorResponse
i SasAct Shak © OpenDoorResponse

sensiNact internal calls

Robotnik Door

Figure 7: sensiNact and door control components

Deliverable nr. | D45
Deliverable Title | Initial Deployment and operation enablers Page 120of 47
Version | 1.00 31 March 2021

“BRAIN-IoT

R A IN loT

EventBus

M L3 A S

UpdateCartstorage | |
UpdateDockPoint
UpdatePickPoint || 5

o e e S — e

UpdateResponse

PickingPointUpdateNorice ickingPointUpdateNorice

UpdateResponse | PickingPointUpdateNotice
Listener Listener

Robotnik Robots

Figure 8: sensiNact and warehouse backend components

For the Endto-End Security enablers, The Things Network API (Hydrao water metephysical devices) and
Airbus Security Gateway Service

EventBus

sensiNact smart behaviour

set
ﬁ notify : 0

E—

sensiNact € achiate

Papyrus

Figure 9: sensiNact and security components

Page 13of 47

i85
SO
»

‘BRAIN-IeT

R A IN loT

5.1 Background and Requirements

Nowadays, ROSbased CPS are widely used in the applications of the Smart City and Industry 4.0 scenarios
due to the good foundati on eetonomid Bnpacts. Asas incregsingnurgberiofp ¢ a n t
different devices will be integrated in a complex and distributed intelligent production environment, the
requirement of communication between ROS-based CPS and other heterogeneous IoT applications are
becoming increasingly significant. However, heterogeneity exists because different CPS and IoT devies use
different technologies in hardware, software, or communication method due to different needs. Moreover,
although ROS has been used in various devicesand loT platforms, it can only support communication
between devices developed based on ROS, itcannot be used to communicate with off -the-shell devices
using different technologies. Also, the messages used in ROSare the original data sent by the device, which
has not been standardized. Furthermore, the receiver must know the content of the communication in
advance, otherwise it will not be able to understand the received data. Last but not all, the communication
between ROSand the automation application through the inter -node communication mechanism in ROS
but it requires the developers to directly create or include in existing ROSpackages the valuable features for
interacting with other external devices. This requires to the developers to be expert in ROS programming.
Besides, the direct operation on existing ROS packages may bring the risk of the damaging the basic
functionalities. Moreover, in the real production environment, the robotics applications are significantly
sophisticated and dynamic, requiring to the bridge to be flexible enough to react to the continuously
changing production environ ment; to allow this the robotic bridge needs to support the update at runtime
and the deployment on demand and this feature is not feasible using only native ROS.

To address the challenges encountered in an intelligent and distributed production environme nt, a more
generic and efficient cross-platform communication middleware for ROS-based CPS highlights its
importance. Specially, apart from allowing the interoperability, adaptivity and reliability, it should also provide
simpler and effective support for the development of such middleware to the developers to allow them focus
on other system functionalities.

This section presents the WoTFenabled ROS Edge Node adaptor, which implements an event-driven
asynchronous crossplatform communication mechanism for ROSbased CPS within BRAINIOT platform
leveraging the OSGi specification. Meanwhile,it exploits the Web of Things (WoT) Thing Description (TD)to
make the ROS Edge Node more portable to the production environment, not restrict to the OSGi
implementation . Furthermore, a code generator will be provided for automatically abstracting the ad-hoc
ROSfunctionalities to speed up the adaptor development process.

WoT-enabled ROS Ege Node located in the Interoperability Layer will be integrated with BRAIN-I0T Fabric,
as a part of Brain-1oT execution platform, it ensures the interoperability with ROS-based platforms and is able
to provide the relevant information to enable the monitoring of real-time state transitio nsof underlying ROS-
based platforms by integrating with the system -level behavior models.

5.2 Relevant Technologies

RosJava project provides a pure Java implementation of ROS, and it also can interconnect to an existing ROS
environment through the IP address. It provides a client library for ROS communications in java that allows
Java programmers to quickly interface with ROS topics, services and parameters through the XML-RPC

“https://github.com/rosjava
8https://en.wikipedia.org/wiki/ XML -RPC- :~:text=XML-RPC is a remote,HTTP as a transport mechanism

Page 14 of 47

https://github.com/rosjava
https://en.wikipedia.org/wiki/XML-RPC#:~:text=XML%2DRPC%20is%20a%20remote,HTTP%20as%20a%20transport%20mechanism

i85
SO
»

‘BRAIN-IeT

R A IN loT

protocol. It provides some common Java API allowing to create new nodes, services, topics in native ROS
environment, and the corresponding ROS service clients. The library can be fully integrated in OSQ software.
One of the existing application leveraging this library is the ROSOSGP project (https://github.com/ibcn -
cloudlet/rososgi) which contains some bundles reusable by ROS Edge Node.

In recent years, W3C organization develops the WoT standard aiming to achieve interoperability problem

between loT platforms and application domains. WoT provides a mechanism for describing IoT interfaces,

allowing loT devices (physicalor virtual entity) and services to communicate with each other, independent of

their underlying implementation, and can span multiple network protocols. In addition, WoT also provides a
standardized way to define and plan loTbehaviors. WoT Architecture speification is centered on thescope of

W3C WoT standardization, divided into several building blocks (e.g., metadataand API). The four core
buildingblocks provided by W3C WoT are: Thing Description, Binding Template, Scripting Application
Programming Interface (API), Security and Privacy Guidelines, each is defined and descriedin detail, more
specially, the central building block is the WoTThing Description (TD), which can describe the metadataof the

object and the network-oriented interface s and itdsthe entrypoint of a Th
encodedin a JavaScript Object Notation (JSON) format that alsoallows JSOMNoased Serialization for Linked

Data (JSONLD) processing. The building blocks enable anapplication client (a Consumer) to interact with

Things that expose diverseprotocols and protocol usagethrough the three types of In -teraction Affordances

defined by Interaction Model of W3C WoT: Properties, Actions and Events. WoT will break thebarrier of
interoperability of various loTplatforms, therebycontributing to the explosive growth of the market. It
doesndtaim to define a newplatform, but to use. the met

JCodeModel'® is a Java code generation library. It provides canmon APIs to generate Java programs using
Java language.

In Brain-10T, these technologies will be used in the following aspects. RosJava can be considered as the
bridge between ROS world and Java world. It provides an efficient way for the ROS Edge Node toestablish a
communication with ROS-based devices. Different ROS functionalities will be mapped into different OSGi
services in the ROS Edge Node. The mapping procedure will be done automatically through JCodeModel
library with a TD of the underlying ROS environment. Anyway, the corresponding formatting procedure of
events and integration with BRAIN-IoT framework should be done by developers.

5.3 ROSEdge Node Architecture

ROS Edge Node will be integrated with BRAINIOT Fabric infrastructure service, which is composed with a set
of the computing resources (physical/virtual machines) and provides a distributed OSGi execution
environment allowing the interaction between the OS Gi services deployed on it through strongly typed

Brain-loT events delivered in the asynchronous BRAINIOT EventBus.(See ANNEXE 4 for the detailed
installation steps).

The architecture of ROS Edge Node is shown inFigure 10. In Brain-1oT Service Robotics use caseROS Edge
node can be considered as an access point or an adaptor to the robots to allow heterogeneous IoT
applications running in the Brain-10T Fabric to control the robots. To enable the interoperability with robots,
ROS Edge Node wil need to have the following functions:

https://github.com/ibcn_-cloudlet/rososqi
10https://github.com/phax/jcodemodel

Page 150f 47

https://github.com/ibcn-cloudlet/rososgi
https://github.com/ibcn-cloudlet/rososgi
https://github.com/ibcn-cloudlet/rososgi
https://github.com/phax/jcodemodel

[o e
.@.i.
.

‘BRAIN-IeT

R A IN loT

1 Inthe northbound , it can receive the interested BRAINIOT events from other different loT platforms
in a distributed environment, then construct the data and send to the connected ROS environment.
Therefore, any new functionalities for enhancing/extending the behaviour of robots according to
external events can be developed using OSGi instead of ROS.

1 In the southbound , the ROS Edge Node is able to retrieve therelevant information from ROSand
inject to the BRAIN-I0T Fabric as BRAINIOT events, which will be received by other BRAINIOT

services.
Event Bus
W BRAIN-IoT Events
; h 4
Ros Edge Node
BRAINIoT Robot BRAINIoT Robot
_ Semvice Events
ROS Service Clients = Ros Command Msgs
‘ RosJava Library
*, OSGI World ¢ 4
ROS Request / Response ROS Publish / Subscribe
Messages Messages
"""""""""""""""""""""""""" XMLRPC | T
v
", ROS World ;" Services Messages
! Topics

ROS Enviornment

Figure 10 - ROS Edge Node Internal Structure

There are two main steps to be done when developping the ROS Edge Nodeadaptor:
1. Abstract all the relevant ROS functionalities

The objective is to make the adaptor able to interoperate with the ROS environment leveraging the APIs
provided by the open source RosJava library. In this way, the adaptor is able to send/receive theROS
request/response messagesto/from the ROS services and publish/subscribe to the ROS topics between
the OSGi world and ROS world.To implement the function, ROS Edge Node will need to:

1 Create alist of clients for each ROS services/publishers/subscribersequired.

1 Mapping between native messages in ROS and Java types

2. Collect and convert the BRAINIOT events to the native ROS messages in Java typesnd
vice versa

ROS Edge Node receivesthe events from heterogeneous platforms in the distributed BRAIN-I0T Fabric
environment and constructs them as Java objects representing ROS messages, then transforms to ROS

Page 16 of 47

0
e B R A IN loT

‘BRAIN-IeT

environment through the service clients providing multiple operation methods to robots . In contrast, the
adaptor also retrieves the ROS messages from the native services/topics and convert to the BRAINOT
events, then deliver them in the distributed EventBus. The connectivity with ROS is confjurable through the
ROS environment variableROS_MASTER_URUsing IP address of the ROS platformby default whose value is
configurable on-the-fly when it will be deployed on a new robot.

5.4 Development of WoT -enabled ROS Edge Node: TD and Code Generator

An ideal middleware for an intelligent environment such as the loT should provide abstractions at various

levels such as heterogeneous input and output hardware devices, hardware and software interfaces, data

streams, physicality and the development process.And an Adaptive middleware is usually motivated by the

need of adapting the middleware to changes in applic
conditions, fixing middl ewareds bugs or extendideg/ i mpr
solution proposes an approach to create a software component to abstract the ROS -based CPS for
communicating with other OSGi-based loT middlewares/applications through the distributed BRAIN-l0T

EventBus. The adaptor can be generated according to diffeent ROS platform implementations. For the

simplicity and speeding up the development process of the ROS Edge Node to quickly abstracting and

adapting to various underlying ROS-based CPS, BraifloT provides a code generator leveraging the
JcodeModel library, whose APIs provides the excellent support for generating Java source code.

Since the mission of W3C WoT (Web of Things) is to counter the fragmentation in the IoT world through
standardized complementing building blocks - e.g., metadata and API- based on Web technology, WoT
enables easy integration and interoperability across IoT platforms and aplicationdomains. WoT Thing
Description (TD) is a general standard for interoperating with diverse applications and devices, it can be
considered as the ertry point of a Thing. Its specification is the core enabling technology. Different
application layer protocols and media types can be described in a TD. Therefore, the WoT has been chosen
to be used in the BRAIN-I0T domain Service Roboticsto describe the ROS functionalitiesandi t 6 s used as
input of the code generator to generate relevant JAVA/OSGi classes to expose ROS services andhen
integrate with Brain-iot Eventbus.The overall development process of ROS Edge Node for BRAINIOT Servce

Robotics use caseis shown in Figure 11

BRAIN-IoT EventBus

I BRAIN-IoT Events

0S Edge Node [, 056
—_——Y——— - . %
W3C - —‘ BRAIN-IoT Service Layer
Thing Description of Input Code Generator for Clients of ROS Services

Abstracting the ROS
Functionalities

p >/ | JCodeModel Library |/

ROS Environment

iEROS

Figure 11- Implementation Process of WoT -enabled ROS Edge Node

In the proposed solution, WoT TD describes the interfaces for OSGi to expose the ROS services and topics.
The ROSfunctionalities are compliant with TD specification:
1) TheROSopics are aslescribedProperties Interactio\ffordances ;

2) TheROServicesare described as Actions Interaction Affordances.

Page 17of 47

[o e
.@@.
.

BQHIn_loT B R A IN loT

The WoT Thing Description use the Protocol Bindingll serialized as formsl2 in a TD to map an Interaction
Affordance to concrete messages of a specific protocol such asHTTP, CoAP, or MQT&nd the corresponding
protocol -specific vocabularies are also defined To describe the metadata identified by ROS-based platforms,
aProtocol Binding based on ROS including aset of vocabulary definitions is proposed in BRAIN-IOT platform.
For each ROS servicedescribed in the Actions Interaction Affordances, the extended vocabularies for ROS

binding include serviceNameg serviceType serviceRequestType serviceResponseTyp&he corresponding
meanings can be easilyunderstood literally as shown in Table 3.

Vocabulary Term Context

ros:serviceName The ROS service used in the ROSenvironment.
ros:serviceType The service type for a specific ROS service
ros:serviceRequestType The type of request message sent to the ROS service

ros:serviceResponseType The type of response message sent from the ROS service

Table 3- Service Vocabulary Definitions for ROSbinding in WoT -enabled ROS Edge Node

Similarly, For each ROS topic described in the Properies Interaction Affordances, the extended vocabularies

for ROSbinding include Role, TopicName, TopicType, MessageType . The corresponding meanings can be
easily understood literally as shown in Table 4.

Vocabulary Term Context

. The role of the node operating on the ROStopic, valuescanbedo Pu bl i s
ros:role . . i
OSubscriberd

ros:topicName The topic name in ROS

ros:topic Type The type of the ROStopic

ros:messageType The type of ROSmessage deliveried on the ROStopic

Table 4- Topic Vocabulary Definitions for ~ ROS binding in WoT -enabled ROS Edge Node

Furthermore, t h eos:apdeGenerator.class6 v ocabul ar ythda both Affbrdaamaks td lberused by

code generator to group the clients ofabstracted ROS functonalities according to the same values of the
vocabulary.

Apart from the protocol -level payloads (eplaced by an ellipsis) descriptions required by TD standard, gart of
Thing Description of ROS environmentin ROSbinding in Brain-1oT Robotics use case is shown inFigure 12

Uhttps://www.w3.org/TR/wot -thing -description/ - protocol -bindings
https://www.w3.org/TR/wot -thing -description/ - form

Page 180f 47

https://www.w3.org/TR/wot-thing-description/#protocol-bindings
https://www.w3.org/TR/wot-thing-description/#form

‘BRAIN-loT

R A IN loT

{
"ros:masterURI":"http://localhost:11311/",
"@type": "Thing",
"properties":{
"availability":{
"type":"object",
"description":"Get the robot availability status",
"robot:capability”:"robot:AvailabilityMonitoring”,
"ros:codeGenerator:class":"AvailibilityComponent",
"properties":{......},
"observable":true,
"writeOnly":false,
"readonly":true,
"forms":[
{
"href":"",
"contentType":"application/xml",
"op”:[
"observeproperty"”, "observeproperty”
]’
"subprotocol":"ros",
"ros:Role":"Subscriber”,
"ros:TopicName":" /#robotName/robot_local_control/state”,
"ros:TopicType":"robot_local _control_msgs/Status”,
"ros:MessageType”:"robot_local_control_msgs.Status”
}
1
1
}’
"actions":{
"gotoAdd":{
"description":"Robot moves forward when receiving this event",
"ros:codeGenerator:class”:"GoToComponent",
"input":{...... 1,
"output":{...... 1,
"forms":[
{
"href':"",
"contentType":"application/xml",
"op":[
"invokeaction"
]’
"subprotocol":"ros",
"ros:serviceName":" /#robotName/robot_local control/NavigationComponent/GoToComponent/add",
"ros:serviceType":"robot_local_control_msgs/GoToPetition",
"ros:serviceRequestType”:"robot_local_control_msgs.GoToPetitionRequest”,
"ros:serviceResponseType”:"robot_local_control_msgs.GoToPetitionResponse”
1
]’
"idempotent":false,
"safe":false
1
1

Figure 12- Thing Description of ROS Environment in Brain -loT

The code generator of ROS Edge Node takes the TD aghe input, the outputs, as a result,area set of Java
classes with the methods providing the corresponding operations to robots, the mapping sbetween the
ROSnterfaces described in TD and the generatedclass methodsare shown in Figure 13.

Page 190of 47

[o e
.@@.
.

= R A IN loT
BRAIN-leT
service 1 Component class block
[register()]_\M
] [call_xxx()]\ T register() method blcok l
WoT TD for [construce o Mgl l\ all_xxx() method block ‘
ROS —
Environment service 2
[register()]/ /,[call_yyy() method block }
> IaTAt
[call yyyo l H construct_xxx_Msg() method
[construce_yyy_msg()]«/ block

Figure 13- Structures of Exposed ROS Environment to OSGI Services Using WoT TD

Specifically, when ROS Edge Noder ecei ves an event 6 constltug XXXdvsg reethpdo ndi n g
representing the operation of the client will be called to construct a Java object representing the Native ROS

messageto be senttothe ROSenvi r onment

XXX stands for the auistomized name of service client.

As an

exampl e, t h eR Q3SG osTeor Cvoi ntpeo neemd Ot h e

t h r o ungthod of the serviceallemt, wKexexthe

OAvailabilityCon

exposed as OSGi servicas the Brain-loT Robotics use casethe corresponding method blocks are shown in

Figure 14.

Component example based on ROS services

Component Include services Related methods
register()
gotoRun call gotoRun ()
construct gotoRun_ Msg()
register()
GoToComponent gotoCancel call_gotoCancel)
construct gotoCancel Msg()
register()
gotoQuery call gotoQuery()
construct gotoQuery Msg()
Component example based on ROS topics
Component Include topics Related methods
AvailibilityComponent availability register()
(subscriber) get value()

Figure 14- Method Blocks of Automatically Exposed ROS Services from TD

Page 20 of 47

i85
SO
»

‘BRAIN-IeT

R A IN loT

5.5 Supportto Models@Runtime

One of the main features provided by the BRAIN-I0T Modelling Methodology and Framwork is
Models@Runtime which is the human-friendly monitoring of system state at runtime, directly through the
system models. This is one particular aspect that is not well explored in the loT domain, and critical
embedded systems domain altogether. A model-based runtime monitoring approach usually helps identify
and fix deviations observed at runtime, compared to formal specifications defined in the models. In the
BRAINI0T solution, not only is runtime formal validation a priority, but the partners also wish to benefit from
monitoring to enable behavior explanations friendly to humans.

In such context, the Models@Runtime feature will be demostrated in the BRAIN-I0T Service Robotics use

case As shown in Figure 15. Firstly, WoT-enabled ROS Edge Nodeis able to send the PobotPosition events

including the localization information to sensiNactEdge Node, so that t h e r redd-time spdsition is

observable in the sensiNact Studio. Secondly, it also providesthei nf or mati on rel ated to ¢t}
state transitions via the UDP protocolt o ani mate the robotsd efikmestatassbyn st at
integrating with BRAINIoTModelling tool. Furthermore, the informat i on about the (beeobot &
battery voltage) can be also monitored by the anomaly detection component sOnar and the anomaly

situations will be observed in the BRAIN-IoT monitoring tool.

Figure 150 WoT-ROS Eige Node Supports Model s@Runtime

WoT-enabled ROS Edge Node is developed as an adaptor to ROShased Robotics systems in BRAINIOT
execution platform to enable the interoperability between ROS-based CPS applications and other
heterogeneous 0T platforms in a sophisticated 10T software ecosystem. This solution provides not only
several innovative features to ease such interactions but also the potential applications in some other
scenarios. Firstly, it has been packaged as BrainloT service with specific Requirements/Capabilites metadata
to provide the Plug&Play feature so that it can be dynamically deployed and flexibly scaled on demand to
connect to multiple ROS-based CPSs at runtime whenever a ew CP$oins the cluster or damaged ones are
to be replaced. Secondly,acode generator is provided to speed up the development process of ROS Edge
Node for different platforms. Thirdly, the use of WoT TD standardizeshe description of the ROS
functionalities, which allows to have a WoT integration-ready and highly reusable solution for further
exploitation. Forthly, ROS Edge Nodabstract the ROS functionalities and provides the methods to operatethe
robos,i t 6s all owed t o d yunaionalittesforlenhandng/pxtending theeb@haviour of robots

according to external events in BRAINIOT platform without stopping the ex isting services instead of

Page 21of 47

