

This project has received funding from the European Unionõs Horizon 2020 research

and innovation programme under grant agreement No 780089.

D4.5 - Final Deployment and operation enablers

Deliverable ID D4.5

Deliverable Title Final Deployment and operation enablers

Work Package WP4

Dissemination Level PUBLIC

Version 1.0

Date 2021-03-31

Status Final

Lead Editor Kentyou

Main Contributors LeventGürgen (Kentyou) christophe Munilla (Kentyou), Rui Zhao

(LINKS)

Published by the BRAIN-IoT Consortium

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 2 of 47

Document History

Version Date Author(s) Description

0.1 2020-09-11 Levent Gürgen (KENT) First TOC

0.2 2020-10-29 Xu Tao (LINKS) Update TOC

0.3 2021-01-29 Christophe Munilla (Kentyou) Added section 4 and 6 with few comments

0.4 2021-02-05 Nigel Squibb (Paremus) Added section 3

0.8 2021-02-15 Rui Zhao (LINKS) Added section 2 and 5 with few comments to section 3

0.9 2021-02-16 Christophe Munilla (Kentyou) Version ready for review

1.0 2021-03-31 Christophe Munilla (Kentyou) Finalized the delivery

Review History

Version Review Date Reviewer Summary of Comments

0.9 2021-02-30 Davide Conzon (LINKS) Approved with minor comments.

0.9 2021-03-08 Manuel Miranda (IM) Approved with minor comments.

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 3 of 47

Table of Contents

Document History .. 2

Review History ... 2

Table of Contents ... 3

1 Introduction ... 4

1.1 Scope .. 4

1.2 Related documents ... 4

1.3 Related Brain-IoT SourceRepositories ... 5

2 Overview in Brain-IoT .. 6

3 BRAIN-IoT Fabric Infrastructure ... 7

3.1 Custom Behaviours ... 8

3.2 Generic Behaviours .. 8

3.3 Behaviour Update Delivery .. 9

4 sensiNact Edge Node .. 11

5 WoT-enabled ROS Edge Node .. 14

5.1 Background and Requirements .. 14

5.2 Relevant Technologies ... 14

5.3 ROS Edge Node Architecture .. 15

5.4 Development of WoT-enabled ROS Edge Node: TD and Code Generator .. 17

5.5 Support to Models@Runtime ... 21

6 Installation .. 23

6.1 Marketplace ... 23

7 Conclusions .. 24

Acronyms ... 25

List of figures .. 25

List of tables .. 26

ANNEX 1 : Installing Paremus Service Fabric ... 27

Background and Requirements ... 27

Installing Service Fabric Software ... 27

Connecting to your Fabric ... 28

ANNEX 2 : Installing sensiNact .. 30

sensiNact overview ... 30

sensiNact installation ... 30

sensiNact first execution .. 31

sensiNact - HTTP northbound calling ... 34

ANNEX 3 : Installing sensiNact Studio .. 39

ANNEX 4: Building and Deplying WoT-enabled ROS Edge Node in Brain-IoT Fabric... 41

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 4 of 47

1 Introduction

1.1 Scope

Building a framework for deployment and operation of Internet of Things (IoT) service orchestration is a

complex task, since it needs to address two major challenges: a strong availability and an abstraction layer to

deal with heterogeneous devices. In order to tackle the challenge of availability, the Brain IoT project has

chosen to rely on Paremus service Fabric1, which provides discover, search, composition and orchestration of

IoT applications in a distributed changing production environment . Regarding the interaction with

heterogeneous known/unknown IoT applications/ devices, Brain-IoT must be flexible enrough to cope the

new and changing discovery mechanisms and requirements. Apart from providing such a flexible BRAIN-IoT

infrastructure, it also provides two types of generic Edge Nodes for the connectivity and interoperability to a

large range of IoT applications/devices: the sensiNact-enabled Edge Node and the WoT-enabled Edge Node.

The sensiNact-enabled Edge Node built based on the Eclipse sensiNact middleware2 has been chosen for its

capability to interact with a wide variety of equipment and protocols, as well as its extensibility mechanisms,

instead the WoT-enabled edge nodes are based on W3C Web of Things standard3 and specifically this

deliverable presents the one implemented to work as an adaptor to the Robot Operating System (ROS)-

based Cyber-physical Systems and devices for the interoperation with other heterogeneous IoT platforms

and devices due to its generality and the extensibility.

The purpose of deliverable 4.5 is to finalize the Brain-IoT execution platform as described in òD2.7-section 3.2

Development Viewò using the best of those three enablers, thanks to evolutions of the three code-bases in

order to integrate them gracefully. The section 2 of this deliverable will specify the scope of the components

within the BRAIN-IoT overall Functional View, the sections 3 will briefly introduce the principle of how BRAIN -

IoT Fabric Infrastructure is able to flexiblly and permitly garantee the load of existing/unexisting IoT

services/devices on demand in production environment. The section 4 representes the sensiNact-enabled

Edge Nodes practically used in BRAIN-IoT use cases, and the section 5 will represent the implemented WoT-

enabled ROS Edge Node used in the Service Robotics domain. Finally, Section 6 describes briefly how the

edge nodes are deployed in the Brain-IoT Exécution Platform and Section 7 concludes the deliverable.

The software stack is finalized in this deliverable. Compared with the initial version of the deliverable òD4.2-

Initial Deployment and operation enablersó, this deliverable will not only keep the installation instruction of

Paremus Service Fabric, but it will also enrich and supplement the instructions to install the sensiNact Edge

Node, as well as the application in both BRAIN-IoT use cases. Furthermore, the present document will also

add the complete design and development details of WoT-enabled ROS Edge Node applied in BRAIN-IoT

Service Robotics use case as well as the detailed instructions to build and run it in Brain-IoT platform.

1.2 Related documents

ID Title Reference Version Date

[RD.1] InitialDiscoverySearchCompositionandOrchestrationEnablers D4.1 1.0 M10

[RD.2] Initial Enablers for Dynamic Distribution of IoT Behaviour D3.3 1.0 M15

[RD.3] Integrationand Lab Scale Evaluation D6.2 1.0 M12

1https://paremus.com/products/#psf
2 https://projects.eclipse.org/projects/technology.sensinact
3 https://www.w3.org/WoT/

https://paremus.com/products/#psf
https://projects.eclipse.org/projects/technology.sensinact
https://www.w3.org/WoT/

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 5 of 47

[RD.4]
Initial Deployment and operation enablers D4.2 1.0 M15

[RD.5] Final discovery, search, composition and orchestration

enablers
D4.4 1.0 M36

[RD.6]
Final Enablers for dynamic distribution of IoT Behaviour D3.7 1.0 M36

Table 1 - Related documents

1.3 Related Brain-IoT SourceRepositories

ID Repository Name Links

2 Brain-iot -sensiNact here

3 Brain-iot -sensiNact-smartbehaviour here

4 Brain-iot -sensiNact-warehouse-backend here

5 Brain-iot -sensiNact-Door here

6 Brain-iot -sensiNact-sica here

7 Brain-iot -sensiNact-sica-smartbehaviour here

8 Brain-iot -sensiNact-secured-ttn here

9 Brain-iot -ros-edge-node here

10 Brain-iot -marketplace here

11
Brain-iot -message-integrity -service here

12
Brain-iot -fabric -systems here

Table 2 - Related BRAIN -IoT Source Repositories

https://github.com/eclipse-researchlabs/brain-iot-sensiNact
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-smartbehaviour
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-warehouse-backend
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-Door
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-sica
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-sica-smartbehaviour
https://github.com/eclipse-researchlabs/brain-iot-sensiNact-secured-ttn
https://github.com/eclipse-researchlabs/brain-iot-ros-edge-node
https://github.com/eclipse-researchlabs/brain-iot-marketplace
https://github.com/eclipse-researchlabs/brain-iot-message-integrity-service
https://github.com/eclipse-researchlabs/brain-iot-fabric-systems

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 6 of 47

2 Overview in Brain -IoT

BRAIN-IoT platform provides an a distributed and highly modular federated environment enabling

the the dynamic deployment, orchestration and monitoring of distributed applications and uniquely,

automatically installing new behaviours in response to environment triggers and user events. One of the

significant functionalities is to provide the dynamic connectivity

to heterogeneous IoT systems/devices through the BRAIN-IoT Interoperability Layer as shown in Figure 1. A

red rectangle highlights the two kind of BRAIN-IoT Edge Nodes providing the interoperability with other IoT

devices and platforms within BRAIN-IoT framework.

¶ SensiNact-enabled Edge Nodes : The edge nodes based on Eclipse sensiNact4 for providing

connectivity, interoperability, data processing to various IoT devices.

¶ WoT-enabled Edge Nodes : The edeg nodes generated from the Web of Things (WoT) Thing

Description 5 (TD), one provided by BRAIN-IoT is the WoT-enabled ROS Edge Node

allowing the interoperability with ROS-based IoT platforms/devices.

Figure 1 - Edge Nodes in Brain -IoT Functional Overview

The edge nodes in BRAIN-IoT Interoperability Layer will be build/released as BRAIN-IoT Services in the

BRAIN-IoT Service Repository presented in D4.6, then deployed in the BRAIN-IoT Fabric presented in D3.7

built upon the Paremus Service Fabric presented in D4.4, all located in the Communication and Management

layer represented in D2.7-section3.2. This deliverable will focus on the development and the functionalities of

the Edge Nodes.

4 https://projects.eclipse.org/proposals/eclipse -sensinact
5 https://www.w3.org/TR/wot -thing -description/

https://projects.eclipse.org/proposals/eclipse-sensinact
https://www.w3.org/TR/wot-thing-description/

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 7 of 47

3 BRAIN-IoT Fabric Infrastructure

The Paremus Service Fabric is a lightweight & resource agnostic distributed runtime; able to run on a single

Raspberry Pi or across 10,000õs of physical or virtual machines. The Service Fabric is a highly modular

OSGiË/Java-based runtime platform that can dynamically assemble composite applications or manage more

traditional Micro Service / Container based deployments. A Service Fabric is operationally simple to install

and manage ð with core management services being self-configuring and self -repairing. Fabrics provide

secure encrypted communications between all participants; the OSGi software artefacts being used at each

point in time, and the provenance of those artefacts , always known. The Service Fabric provided the runtime

foundations for BRAIN-IoT project.

As implemented, the Brain-IoT Fabric is an OSGI based structurally modular environment; hence the use of

alternative implementations of functional components and/or alternate protocols is possible and may be

explored by future interested parties. The major and unique development within the Brain -IoT project is the

implementation of the "Event Bus". This allows the Fabric to load and run new processes based on external

events - for instance, a security light being switched on by its own sensor, or a a sensor being triggered when

a robot approaches or a door, or when the water level in a dam reaches a pre-determined level.

It must be understood that the Brain -IoT Event Bus is not simply a piece of software reacting to an external

event, but a complete and powerful system permitting arbitrary and previously unknown physical events to

load and run whole new software applications, which may change the entire way the IoT system works.

The Brain-IoT Fabric is a stand-alone fabric in its own right, and does not rely on use of the Paremus Service

Fabric product, although it builds heavily upon the concepts used by Paremus Ltd. This is discussed at length

in D4.4

What are we trying to achieve with the infrastructure? The infrastructure is designed to flexibly apply and

modify both common and / or unique Behaviour patterns across the entire set of "Things" contained within

the IoT system under consideration. Again, this is detailed in D4.4.

The general concepts used in BRAIN-IoT infrastructure are the following:

¶ Edge Node - A Java / OSGi entity that interacts with the local Fabric and 'Things' -

o the Edge Node may pull behaviours / software updates from its local fabric or send metrics

to the local Fabric.

o The Edge Node may or may not be a full member the Local Fabric. If it is not a member of

the local fabric then it must be trusted by the local fabric, potentially by being federated into

it.

o While initially Edge Nodes will be a pre-configured 'stack' - later the Edge Node may be able

to consume a TD, map relevant portions to OSGi Requirements and assemble required

bindings and parsers in response.

¶ Thing - A Physical Entities - Sensors or Actuators that can be controlled by software.

¶ Thing Description (TD) - the W3C description if the 'Thing' - this description may be sourced from

the 'Thing' itself or from a Thing Device Directory. A TD is instance 'specific' - i.e. may be tied to the

Serial number of the Thing.

¶ Thing Template (TT) - A generic TD description that is not tied to specific 'Thing' instances.

¶ Thing Device Directory (TDD) - a repository of Thing Descriptions & Templates.

¶ Servient - An entity that publishes a TD / TT

¶ Behaviour Repository - a repository of software behaviours - these artefacts Java/OSGi bundles

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 8 of 47

3.1 Custom Behaviours

By custom behaviour, we mean a behaviour specific to a particular physical "Thing", the "Thing" is a physical

entities (i.e. Sensor or Actuator) that can be controlled by software.

¶ Customized Behaviours are keyed on the 'Thing' Identity, i.e. they apply to a specific sensor or

actuator (for example a main control valve in a water pumping station)

o If specific 'Thing' instances a Thing Description (TD);

o if a set of 'Thing' instances a Thing Template6 (TT).

¶ Customized behaviours may be able to interact directly with the `Thing` without a TD

¶ Or interact with the `Thing` via the use of the embedded TT.

o In the Brain-IoT scenario, it is undesirable to embed a TD as this restricts the Smart

Behaviour to a specific Instance of a specific Type of Thing.

o It is better to embed the TT and generate the TD with respect to the specific Thing being

interacted with.

Initally, custom behaviours are generally loaded upfront and are available to the Edge Nodes from the local

Fabric behaviour repository, but one of the important strengths of the Brain -IoT fabric is the ability to change

the behaviours available, either by manual operation or in response to events transiting the event bus (see

Figure 2). This autonomic and dynamic reconfiguration of Thing behaviour is unique to the Brain -IoT fabric.

Figure 2- Customized model

3.2 Generic Behaviours

Should there be no pre-existing Custom Behaviour exists then a Generic Behaviour may be automatically

generated by Brain IoT. This may be:

¶ Based on existing understanding and / or rules of the system itself.

o It may be a required Generic Behaviour, e.g. a light switch behaviour - lights should be

switched on by a robot when it enters the room if they are off

o It may be combined with a specific TT -- i.e. this is how I interact with THIS specific type of

light switch.

¶ The resultant dynamically composed Generic Behaviour may

6 https://www.w3.org/TR/wot -binding -templates/

https://www.w3.org/TR/wot-binding-templates/

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 9 of 47

o Have the TT embedded.

o Or the Generic Behaviour may dynamically download the required TT (or if an instance

specific TD exists) from the TDD.

Note: A TD is sourced from a òservientó which can come from *anywhere*! (Although prudent security

policies must be consdiered)

See - https://www.w3.org/TR/wot -architecture/#wot -deployment -scenarios-and-guidelines

In BRAIN-IoT the TDD is the root source of Thing Descriptions based on identifiers/classifiers (i.e. it is the

servient). However, if the Behaviour has an embedded TT - (i.e the behaviour is specific to the device) - then

the Smart Bundle is the local Servient. The deploment of generic behaviours is shown in Figure 3.

Figure 3 ð Generic Model

3.3 Behaviour Update Delivery

¶ For pre-defined / pre -configured behaviours (e.g. a State Machine) the update behaviour is the same

as any other Bundle.

¶ However, some `Smart Behaviours` may require training in the runtime environment - e.g. ML or an

AAN.

¶ This training may occur in any Fabric (local or remote as appropriate) with the training data streamed

from the live environment.

¶ Once a desired level of Confidence has been achieved the trained Behaviour may be promoted to a

Custom or Generic behaviour available for - as appropriate - Remote / Local or Edge Node

deployment.

The flow for updating the changed services at BRAIN-IoT runtime is shown in Figure 4.

https://www.w3.org/TR/wot-architecture/#wot-deployment-scenarios-and-guidelines

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 10 of 47

Figure 4- Updates delivering model

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 11 of 47

4 sensiNact Edge Node

Brain-IoT aims at creating highly scalable and adaptive processing òFabricsó on Cloud, or if needed detached

from the Internet in a fully autonomous manner ; it allows to distribute sensiNact gateway instances among

edge nodes connected to each others. (See ANNEXE 1, 2 for the detailed installation steps)

Figure 5: sensiNact inBRAIN-IoT

The first described integrated architecture was defining two logical components based on sensiNact, whose

respective roles were on one hand to manage the lifecycle of sensiNact gateway instances in the BrainIoT

Fabric, and on the other hand to connect to external devices/services required by the specified use

cases.While developing complementary modules for the project it appeared more relevant and efficient to

delegate the lifecycle management to the Fabric itself using BrainIoT Services (previously known as Smart

Behaviours). This management has been also made possible by the extended intermediation role played by

sensiNact in an increasing number of use cases; the deployment of sensiNact gateway instances is directly

related to those of BrainIoT Services provided by its modules and implied in the intermediation between

internal components . Each sensiNact Gateway asynchronously interacts with BrainIoT Services using the

Brain-IoT Event Bus implementation:

For the EMALCSAõs water infrastructure management, the SICA system responsible of the critical

infrastructure; the s0nar anomalies detector framework; as well as the Papyrus control model in charge of

generating sensiNact Applications.

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 12 of 47

Figure 6: sensiNact and critical water infrastructure control components

For the Robotnik Manufacture use case, the elevator/door API as well as the warehouse backend

configuration and monitor ing.

Figure 7: sensiNact and door control components

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 13 of 47

Figure 8: sensiNact and warehouse backend components

For the End-to-End Security enablers, The Things Network API (Hydrao water meter physical devices) and

Airbus Security Gateway Service

Figure 9: sensiNact and security components

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 14 of 47

5 WoT-enabled ROS Edge Node

5.1 Background and Requirements

Nowadays, ROS-based CPS are widely used in the applications of the Smart City and Industry 4.0 scenarios

due to the good foundation of ROS, causing signiþcant socio-economic impacts. As an increasing number of

different devices will be integrated in a comp lex and distributed intelligent production environment, the

requirement of communication between ROS-based CPS and other heterogeneous IoT applications are

becoming increasingly significant. However, heterogeneity exists because different CPS and IoT devices use

different technologies in hardware, software, or communication method due to different needs. Moreover,

although ROS has been used in various devices and IoT platforms, it can only support communication

between devices developed based on ROS, it cannot be used to communicate with off -the-shell devices

using different technologies. Also, the messages used in ROSare the original data sent by the device, which

has not been standardized. Furthermore, the receiver must know the content of the communica tion in

advance, otherwise it will not be able to understand the received data. Last but not all, the communication

between ROS and the automation application through the inter -node communication mechanism in ROS,

but it requires the developers to directly create or include in existing ROS packages the valuable features for

interacting with other external devices. This requires to the developers to be expert in ROS programming.

Besides, the direct operation on existing ROS packages may bring the risk of the damaging the basic

functionalities. Moreover, in the real production environment, the robotics applications are significantly

sophisticated and dynamic, requiring to the bridge to be flexible enough to react to the continuously

changing production environ ment; to allow this the robotic bridge needs to support the update at runtime

and the deployment on demand and this feature is not feasible using only native ROS.

To address the challenges encountered in an intelligent and distributed production environme nt, a more

generic and efficient cross-platform communication middleware for ROS-based CPS highlights its

importance. Specially, apart from allowing the interoperability, adaptivity and reliability, it should also provide

simpler and effective support for the development of such middleware to the developers to allow them focus

on other system functionalities.

This section presents the WoT-enabled ROS Edge Node adaptor, which implements an event-driven

asynchronous cross-platform communication mechanism for ROS-based CPS within BRAIN-IoT platform

leveraging the OSGi specification. Meanwhile, it exploits the Web of Things (WoT) Thing Description (TD) to

make the ROS Edge Node more portable to the production environment, not restrict to the OSGi

implementation . Furthermore, a code generator will be provided for automatically abstract ing the ad-hoc

ROS functionalities to speed up the adaptor development process.

WoT-enabled ROS Edge Node located in the Interoperability Layer will be integrated with BRAIN-IoT Fabric,

as a part of Brain-IoT execution platform, it ensures the interoperability with ROS-based platforms and is able

to provide the relevant information to enable the monit oring of real-time state transitionsof underlying ROS-

based platforms by integrating with the system -level behavior models.

5.2 Relevant Technologies

5.2.1 ROS-OSGi and RosJava Open-Source Library

RosJava7 project provides a pure Java implementation of ROS, and it also can interconnect to an existing ROS

environment through the IP address. It provides a client library for ROS communications in java that allows

Java programmers to quickly interface with ROS topics, services and parameters through the XML-RPC8

7https://github.com/rosjava
8https://en.wikipedia.org/wiki/XML -RPC - :~:text=XML-RPC is a remote,HTTP as a transport mechanism

https://github.com/rosjava
https://en.wikipedia.org/wiki/XML-RPC#:~:text=XML%2DRPC%20is%20a%20remote,HTTP%20as%20a%20transport%20mechanism

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 15 of 47

protocol. It provides some common Java API allowing to create new nodes, services, topics in native ROS

environment, and the corresponding ROS service clients. The library can be fully integrated in OSGi software.

One of the existing application leveraging this library is the ROS-OSGi9 project(https://github.com/ibcn -

cloudlet/rososgi) which contains some bundles reusable by ROS Edge Node.

5.2.2 W3C Thing Description

In recent years, W3C organization develops the WoT standard aiming to achieve interoperability problem

between IoT platforms and application domains. WoT provides a mechanism for describing IoT interfaces,

allowing IoT devices (physical or virtual entity) and services to communicate with each other, independent of

their underlying implementation, and can span multiple network protocols. In addition, WoT also provides a

standardized way to define and plan IoTbehaviors. WoT Architecture specification is centered on thescope of

W3C WoT standardization, divided into several building blocks (e.g., metadataand API). The four core

buildingblocks provided by W3C WoT are: Thing Description, Binding Template, Scripting Application

Programming Interface (API), Security and Privacy Guidelines, each is defined and descriedin detail, more

specially, the central building block is the WoTThing Description (TD), which can describe the metadataof the

object and the network -oriented interfaces and itõsthe entrypoint of a Thing. Thing Descriptions are

encodedin a JavaScript Object Notation (JSON) format that alsoallows JSON-based Serialization for Linked

Data (JSON-LD) processing. The building blocks enable anapplication client (a Consumer) to interact with

Things that expose diverseprotocols and protocol usagethrough the three types of In -teraction Affordances

defined by Interaction Model of W3C WoT: Properties, Actions and Events. WoT will break thebarrier of

interoperability of various IoTpl atforms, therebycontributing to the explosive growth of the market. It

doesnõtaim to define a newplatform, but to use the metadata to bridgeexisting platforms and standards.

5.2.3 JCodeModel Library

JCodeModel10 is a Java code generation library. It provides common APIs to generate Java programs using

Java language.

In Brain-IoT, these technologies will be used in the following aspects. RosJava can be considered as the

bridge between ROS world and Java world. It provides an efficient way for the ROS Edge Node to establish a

communication with ROS-based devices. Different ROS functionalities will be mapped into different OSGi

services in the ROS Edge Node. The mapping procedure will be done automatically through JCodeModel

library with a TD of the underlying ROS environment. Anyway, the corresponding formatting procedure of

events and integration with BRAIN-IoT framework should be done by developers.

5.3 ROS Edge Node Architecture

ROS Edge Node will be integrated with BRAIN-IoT Fabric infrastructure service, which is composed with a set

of the computing resources (physical/virtual machines) and provides a distributed OSGi execution

environment allowing the interaction between the OS Gi services deployed on it through strongly typed

Brain-IoT events delivered in the asynchronous BRAIN-IoT EventBus. (See ANNEXE 4 for the detailed

installation steps).

The architecture of ROS Edge Node is shown in Figure 10. In Brain-IoT Service Robotics use case, ROS Edge

node can be considered as an access point or an adaptor to the robots to allow heterogeneous IoT

applications running in the Brain-IoT Fabric to control the robots. To enable the interoperability with robots,

ROS Edge Node will need to have the fo llowing functions:

9https://github.com/ibcn -cloudlet/rososgi
10https://github.com/phax/jcodemodel

https://github.com/ibcn-cloudlet/rososgi
https://github.com/ibcn-cloudlet/rososgi
https://github.com/ibcn-cloudlet/rososgi
https://github.com/phax/jcodemodel

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 16 of 47

¶ In the northbound , it can receive the interested BRAIN-IoT events from other different IoT platforms

in a distributed environment, then construct the data and send to the connected ROS environment.

Therefore, any new functionalities for enhancing/extending the behaviour o f robots according to

external events can be developed using OSGi instead of ROS.

¶ In the southbound , the ROS Edge Node is able to retrieve the relevant information from ROSand

inject to the BRAIN-IoT Fabric as BRAIN-IoT events, which will be received by other BRAIN-IoT

services.

Figure 10 - ROS Edge Node Internal Structure

There are two main steps to be done when developping the ROS Edge Node adaptor:

1. Abstract all the relevant ROS functionalities.

The objective is to make the adaptor able to interoperate with the ROS environment leveraging the APIs

provided by the open source RosJava library. In this way, the adaptor is able to send/receive theROS

request/response messages to/ from the ROS services and publish/subscribe to the ROS topics between

the OSGi world and ROS world. To implement the function, ROS Edge Node will need to:

¶ Create a list of clients for each ROS services/publishers/subscribers required.

¶ Mapping between native messages in ROS and Java types

2. Collect and convert the BRAIN-IoT events to the native ROS messages in Java types and

vice versa.

ROS Edge Node receives the events from heterogeneous platforms in the distributed BRAIN -IoT Fabric

environment and constructs them as Java objects representing ROS messages, then transforms to ROS

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 17 of 47

environment through the service clients providing multiple operation methods to robots . In contrast, the

adaptor also retrieves the ROS messages from the native services/topics and convert to the BRAIN-IoT

events, then deliver them in the distributed EventBus. The connectivity with ROS is configurable through the

ROS environment variable ROS_MASTER_URI using IP address of the ROS platform by default whose value is

configurable on -the-fly when it will be deployed on a new robot.

5.4 Development of WoT -enabled ROS Edge Node: TD and Code Generator

An ideal middleware for an intelligent environment such as the IoT should provide abstractions at various

levels such as heterogeneous input and output hardware devices, hardware and software interfaces, data

streams, physicality and the development process. And an Adaptive middleware is usually motivated by the

need of adapting the middleware to changes in applicationõs requirements, changes of environmental

conditions, fixing middlewareõs bugs or extending/improving the middleware functionality. ROS Edge Node

solution proposes an approach to create a software component to abstract the ROS -based CPS for

communicating with other OSGi-based IoT middlewares/applications through the distributed BRAIN-IoT

EventBus. The adaptor can be generated according to different ROS platform implementations. For the

simplicity and speeding up the development process of the ROS Edge Node to quickly abstracting and

adapting to various underlying ROS-based CPS, Brain-IoT provides a code generator leveraging the

JcodeModel library, whose APIs provides the excellent support for generating Java source code.

Since the mission of W3C WoT (Web of Things) is to counter the fragmentation in the IoT world through

standardized complementing building blocks - e.g., metadata and API - based on Web technology, WoT

enables easy integration and interoperability across IoT platforms and aplicationdomains. WoT Thing

Description (TD) is a general standard for interoperating with diverse applications and devices, it can be

considered as the entry point of a Thing . Its specification is the core enabling technology. Different

application layer protocols and media types can be described in a TD. Therefore, the WoT has been chosen

to be used in the BRAIN-IoT domain Service Robotics to describe the ROS functionalities and itõs used as the

input of the code generator to generate relevant JAVA/OSGi classes to expose ROS services and then

integrate with Brain-iot Eventbus. The overall development process of ROS Edge Node for BRAIN-IoT Service

Robotics use case is shown in Figure 11

Figure 11- Implementation Process of WoT -enabled ROS Edge Node

In the proposed solution, WoT TD describes the interfaces for OSGi to expose the ROS services and topics.

The ROS functionalities are compliant with TD specification:

1) The ROS topics are as described Properties Interaction Affordances ;

2) The ROS services are described as Actions Interaction Affordances.

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 18 of 47

The WoT Thing Description use the Protocol Binding11 serialized as forms12 in a TD to map an Interaction

Affordance to concrete messages of a specific protocol such as HTTP, CoAP, or MQTT and the corresponding

protocol -specific vocabularies are also defined. To describe the metadata identified by ROS-based platforms,

aProtocol Binding based on ROS including a set of vocabulary definitions is proposed in BRAIN-IoT platform.

For each ROS service described in the Actions Interaction Affordances, the extended vocabularies for ROS-

binding include serviceName, serviceType, serviceRequestType, serviceResponseType.The corresponding

meanings can be easily understood literally as shown in Table 3.

Vocabulary Term Context

ros:serviceName The ROS service used in the ROS environment.

ros:serviceType The service type for a specific ROS service

ros:serviceRequestType The type of request message sent to the ROS service

ros:serviceResponseType
The type of response message sent from the ROS service

Table 3- Service Vocabulary Definitions for ROS-binding in WoT -enabled ROS Edge Node

Similarly, For each ROS topic described in the Properies Interaction Affordances, the extended vocabularies

for ROS-binding include Role, TopicName, TopicType, MessageType . The corresponding meanings can be

easily understood literally as shown in Table 4.

Vocabulary Term Context

ros:role
The role of the node operating on the ROS topic , values can be òPublisheró or

òSubscriberó

ros:topicName The topic name in ROS

ros:topic Type The type of the ROS topic

ros:messageType
The type of ROS message deliveried on the ROS topic

Table 4- Topic Vocabulary Definitions for ROS-binding in WoT -enabled ROS Edge Node

Furthermore, the òros:codeGenerator:classó vocabulary is added for the both Affordances to be used by

code generator to group the clients ofabstracted ROS functonalities according to the same values of the

vocabulary.

Apart from the protocol -level payloads (eplaced by an ellipsis) descriptions required by TD standard, a part of

Thing Description of ROS environment in ROS-binding in Brain-IoT Robotics use case is shown in Figure 12

11https://www.w3.org/TR/wot -thing -description/ - protocol -bindings
12https://www.w3.org/TR/wot -thing -description/ - form

https://www.w3.org/TR/wot-thing-description/#protocol-bindings
https://www.w3.org/TR/wot-thing-description/#form

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 19 of 47

Figure 12- Thing Description of ROS Environment in Brain -IoT

The code generator of ROS Edge Node takes the TD as the input , the output s, as a result, area set of Java

classes with the methods providing the corresponding operations to robots, the mapping sbetween the

ROSinterfaces described in TD and the generated class methodsare shown in Figure 13.

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 20 of 47

Figure 13- Structures of Exposed ROS Environment to OSGI Services Using WoT TD

Specifically, when ROS Edge Node receives an event, the corresponding òconstruct_XXX_Msgó method

representing the operation of the client will be called to construct a Java object representing the Native ROS

message to be sent to the ROS environment through the òcall_XXXó method of the service client , where the

XXX stands for the customized name of service client.

As an example, the òGoToComponentó ROS service and the òAvailabilityComponentó ROS topic have been

exposed as OSGi servicesin the Brain-IoT Robotics use case, the corresponding method blocks are shown in

Figure 14.

Figure 14- Method Blocks of Automatically Exposed ROS Services from TD

model -Based fRamework for dependable sensing and Actuation in INtelligent decentralized IoT systems

Deliverable nr.

Deliverable Title

Version

D4.5

Initial Deployment and operation enablers

1.0 ð 31 March 2021

Page 21 of 47

5.5 Support to Models@Runtime

One of the main features provided by the BRAIN-IoT Modelling Methodology and Framwork is

Models@Runtime which is the human-friendly monitoring of system state at runtime, directly through the

system models. This is one particular aspect that is not well explored in the IoT domain, and critical

embedded systems domain altogether. A model-based runtime monitoring approach usually helps identify

and fix deviations observed at runtime, compared to formal specifications defined in the models. In the

BRAIN-IoT solution, not only is runtime formal validation a priority, but the partners also wish to benefit from

monitoring to enable behavior explanations friendly to humans.

In such context, the Models@Runtime feature will be demostrated in the BRAIN-IoT Service Robotics use

case. As shown in Figure 15. Firstly, WoT-enabled ROS Edge Node is able to send the PobotPosition events

including the localization information to sensiNactEdge Node, so that the robotsõreal-time position is

observable in the sensiNact Studio. Secondly, it also provides the information related to the robotsõ runtime

state transitions via the UDP protocol to animate the robotsõ execution status as well as the failure states by

integrating with BRAIN-IoTModelling tool . Furthermore, the information about the robotõs battery (i.e.

battery voltage) can be also monitored by the anomaly detection component s0nar and the anomaly

situations will be observed in the BRAIN-IoT monitoring tool.

Figure 15ð WoT-ROS Edge Node Supports Model s@Runtime

5.5.1 Innovations

WoT-enabled ROS Edge Node is developed as an adaptor to ROS-based Robotics systems in BRAIN-IoT

execution platform to enable the interoperability between ROS-based CPS applications and other

heterogeneous IoT platforms in a sophisticated IoT software ecosystem. This solution provides not only

several innovative features to ease such interactions, but also the potential applications in some other

scenarios. Firstly, it has been packaged as Brain-IoT service with specific Requirements/Capabilities metadata

to provide the Plug&Play feature so that it can be dynamically deployed and flexibly scaled on demand to

connect to multiple ROS-based CPSs at runtime whenever a new CPSjoins the cluster or damaged ones are

to be replaced. Secondly, acode generator is provided to speed up the development process of ROS Edge

Node for different platforms. Thirdly, the use of WoT TD standardizesthe description of the ROS

functionalities, which allows to have a WoT integration-ready and highly reusable solution for further

exploitation.Forthly, ROS Edge Nodeabstract the ROS functionalities and provides the methods to operatethe

robos,itõs allowed to dynamically deploy new functionalities for enhancing/extending the behaviour of robots

according to external events in BRAIN-IoT platform without stopping the ex isting services, instead of

